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A B S T R A C T
Ultrasound-guided renal access for percutaneous nephrolithotomy (usPCNL) is a common technique
used to remove large kidney stones through an incision in the patient’s back. The procedure requires
a high level of dexterity and is associated with a steep learning curve. Advanced simulation tools
can enhance clinical training and provide interventionists with a platform to rehearse the operation
with pre-operative patient data. This paper presents the first step towards the development of such a
simulator. We propose a new framework and algorithms to generate volumetric ultrasound images
from preoperative 2D computed tomography (CT). First, successive CT scans are interpolated to
augment the dataset and increase spatial resolution. Each scan is then converted into an ultrasound
image based on principles of linear acoustics and spatial impulse response. These ultrasound images
are then combined to form two volumetric images, one derived from the original sparse CT scans, and
one with the denser data. New images can then be formed along arbitrary imaging planes not captured
in the original CT data. The obtained images are compared with real images acquired experimentally,
and further evaluated quantitatively. We demonstrate that the peak signal-to-noise ratio (PSNR) in
the simulated images shows a significant enhancement for the denser CT scan datasets, with an
improvement of 34.8% for Dataset 1 and 46.5% for Dataset 2. The second part of the paper proposes
a multi-level approach where kidney stones and kidney contours are segmented from CT scans and
fused on top of ultrasound images. Four levels of assistance are proposed, ranging from full anatomical
information, to no assistance with increasing levels of attenuation, increasing complexity and realism
to build the trainee’s expertise progressively. This work lays the foundation for developing the first
usPCNL simulator, which could enhance training and procedural outcomes in this complex medical
procedure.

1. Introduction
Percutaneous nephrolithotomy (PCNL) is a minimally

invasive procedure to remove large kidney stones that cannot
be treated with other methods such as extracorporeal shock
wave lithotripsy or ureteroscopy. In this procedure, the in-
terventionist accesses the kidney through a small incision
on the patient’s back and uses a nephroscope to remove the
stones under image guidance Türk, Petrik, Sarica, Seitz, Sko-
larikos, Straub and Knoll (2016); Metzler, Holt and Harper
(2021); Labate, Modi, Timoney, Cormio, Zhang, Louie,
Grabe and de la Rosette (2011). Fluoroscopy has been the
preferred imaging modality as it provides real-time guidance
and clear visualization of instruments and the urinary tract.
However, it exposes patients and staff to ionizing radiation
Yang, Wen, Chen and Chen (2019); Kumari, Kumar, Wad-
hwa, Aron, Gupta and Dogra (2006). Ultrasound-guided
PCNL (usPCNL) has emerged as an alternative modality as
it is radiation-free and allows for better visualization of soft
tissue structures Pu, Wang, Tang, Yuan, Li, Bai, Wang, Wei
and Han (2015). In addition, usPCNL can be performed with
patients in the supine position, which is more comfortable for
obese patients and those with cardiopulmonary disorders or
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skeletal deformities El-Shaer, Abdel-Lateef, Torky, Elshaer
et al. (2019).

Despite these advantages, the adoption of usPCNL has
been limited by a steep learning curve associated with nav-
igating surgical instruments while interpreting real-time ul-
trasound(US) images. This learning curve is often attributed
to the level of dexterity required to coordinate the US probe
and the tool, the limited spatial resolution of ultrasound
images, and the presence of image artefacts Sahan, Sari-
lar, Savun, Caglar, Erbin and Ozgor (2020); Beiko, Razvi,
Bhojani, Bjazevic, Bayne, Tzou, Stoller and Chi (2019). To
smoothen the learning curve, traditional training methods
often involve practising the procedure on phantoms or ca-
davers, which may not fully replicate real-world scenarios.
As a result, there is a critical need for advanced simulation
tools that offer realistic and accessible training opportuni-
ties. Canalichio, Berrondo and Lendvay (2020); Ferraguti,
Farsoni and Bonfè (2022); Farcas, Reynolds and Lee (2021);
Doizi and Koskas (2022)

High-fidelity simulators replicate anatomical and pro-
cedural complexities, providing trainees with a safe and
controlled environment to practice and hone their skills.
These simulators can also offer real-time feedback and per-
formance metrics, which are essential for effective skill
development Ajemba, Ikwe and Iroanya (2024); Hamacher,
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Whangbo, Kim and Chung (2018); Gomaa, Grafton-Clarke,
Saratzis and Davies (2023); Ritchie, Pacilli and Nataraja
(2023). An example is Marion Surgical’s K181 fluoroscopy-
based PCNL simulator - a virtual reality platform that emu-
lates PCNL procedures using a virtual reality headset and a
haptic device. The simulator can import real, pre-operative
Computed Tomography (CT) images of the patient to sim-
ulate real-time fluoroscopy images, providing opportunities
not only for skills development but also surgical rehearsal.
To date, no commercially available PCNL simulator uses
ultrasound image guidance Sainsbury, Lacki, Shahait, Gold-
enberg, Baghdadi, Cavuoto, Ren, Green, Lee, Averch et al.
(2020); Rassweiler and Teber (2016).

The first step towards implementing a usPCNL simulator
would be to recreate realistic volumetric ultrasound images
of the patient, either through pre-operative ultrasound scans
or by simulating such images from routinely used CT scans.
A collection of 2D images can be converted into a volumetric
image that can be sliced and displayed in real time as the
trainee controls the position and orientation of a virtual
ultrasound probe in the simulator. This paper presents the
first step towards the development of a usPCNL simulator,
that is, a method to simulate real-time ultrasound images
along arbitrary imaging direction from pre-operative parallel
2D CT scans. The image simulator employs a multi-level
approach with increasing levels of complexity and assis-
tance, tailored to progressively build the trainee’s expertise.
It integrates segmented images of the kidney contour and
the location of any kidney stones obtained from CT scans.
By overlaying these segmented images on top of real-time
US images, the simulator offers a comprehensive visual
representation that allows the trainee to focus on one aspect
of their training at a time. The proposed progressive training
approach with varying levels of assistance is structured as
follows:

• Level 1: Kidney stones and kidney contours are seg-
mented and overlaid on top of real-time ultrasound
images, allowing trainees to focus on tool steering;

• Level 2: Segmented kidney stone images are removed,
emphasizing anatomical recognition and navigation
without the presence of stones;

• Level 3: Segmented kidney stones are overlaid on
real-time US images, but segmented kidney contours
are not provided, challenging trainees to identify and
navigate towards the stones without the aid of kidney
contours;

• Level 4: All segmented images are removed, and
varying levels of US attenuation are introduced to
simulate different tissue densities and complexities,
mimicking real-world challenges.

Such a progressive training framework can reduce the
learning curve associated with ultrasound-guided PCNL.

To implement the proposed framework we follow the
overall workflow shown in Fig. 1. Firstly, preoperative CT

images of a subject with kidney stones are acquired. A region
of interest (ROI) is chosen in each CT image to limit the
boundaries to what a conventional ultrasound transducer
can reach. The selected ROI is resampled using bilinear
interpolation to augment the number of pixels in each image
and make denser ultrasound scattering later on. Given the
limited spatial resolution of CT slices, a second interpo-
lation algorithm is employed to generate additional slices
between the original CT scans. This is elaborated in detail
in Section II. From each slice in the augmented CT dataset,
a scattering map with normally distributed signal strength
is created. Based on the principles of linear acoustics and
computation of the spatial impulse response, speckles are
simulated by randomly placed scatterers with strength ran-
domly chosen from a normal distribution. The Tupholme-
Stepanishen method is then used for calculating pulsed ultra-
sound fields from which a corresponding ultrasound image
is created. The process of converting CT scans into 2D
ultrasound images is explained in Section III. In Section
IV, these simulated 2D ultrasound images are arranged in a
3D voxel, thereby extending data formation to slices taking
along directions not captured in the original dataset. The
final step, presented in Section V, is the thresholding of
original CT images to segment the kidney contour and
kidney stones and then fuse. The remainder of the paper
defines performance metrics to evaluate and compare the
generated US images against the real-images obtained with
the same phantom, presents the obtained experiential results
followed by a discussion and conclusions.

Towards implementing the framework above, this paper
offers the following contributions:

1. A physics-based method for generating volumetric
ultrasound images from 2D CT scans using interpo-
lation and acoustic modeling with tissue attenuation.

2. A multilevel system that incrementally builds exper-
tise in ultrasound-guided PCNL, transitioning from
guided overlays to realistic challenges.

3. Fusion of segmented kidney and stone contours for
guided learning and gradual removal of assistance to
challenge anatomical recognition and procedural nav-
igation forms the foundation for the PCNL simulators.

Unlike prior work that primarily focused on physics-
based ultrasound simulation Selladurai et al. (2024); Satheesh
and Thittai (2019), our contribution lies in combining CT-
derived volumetric densification with a pedagogically struc-
tured, multi-level training framework for usPCNL. The
progressive removal of visual cues, guided overlays, and
attenuation effects represents a novel integration aimed at
reducing learning curves. Furthermore, we use multiple
datasets enabling both controlled validation and clinically
relevant testing. To rigorously evaluate reconstruction fi-
delity, we employ a comprehensive set of validation metrics
including Peak signal-to-noise ratio (PSNR), Dice Simi-
larity Coefficient (DSC), and Structural Similarity Index
Measure(SSIM), offering both intensity and structure-based
assessments. In addition, arbitrary slices extracted from the
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Figure 1: Workflow to generate volumetric ultrasound images from 2D CT scans. CT images are interpolated and converted into
ultrasound images to form a 3D volume. New images are then created along imaging planes not captured in the original CT data.

reconstructed 3D volume are analyzed to validate robustness
across varying anatomical planes. By incorporating higher-
order interpolation, our framework improves spatial conti-
nuity and anatomical fidelity. Collectively, these contribu-
tions advance beyond existing work by providing a multi-
dataset, multi-metric, and pedagogically adaptive simulation
platform that is better aligned with both clinical realities and
training needs.

2. CT IMAGE PREPROCESSING
The proposed framework begins with CT image prepro-

cessing, we used two different datasets:
1. Dataset 1: A set of CT scans and the correspond-

ing ultrasound images are acquired from a CIRS
Model 057A Computerized Imaging Reference Sys-
tems (2013) triple-modality abdominal phantom, mea-
suring 26 × 12.5 × 19 cm, was used in this study.
Designed to mimic the anatomy of an adult abdomen,
it is compatible with ultrasound, and MRI imaging.
The phantom incorporates internal anatomical fea-
tures such as the liver, a section of lung, portal vein,
segments of both kidneys, abdominal aorta, vena cava,
simulated spine, and six ribs. Additionally, it contains
eight embedded lesions.

2. Dataset 2: The second dataset was collected from
the Kaggle database, PACS (Picture Archiving and
Communication System) archives across multiple
hospitals in Dhaka, Bangladesh. Patients included in

this dataset had pre-established diagnoses of kidney-
related findings (tumour, cyst, stone, or normal).
Both coronal and axial CT slices were selected from
whole-abdomen and urogram protocols, including
both contrast-enhanced and non-contrast studies, to
ensure variability across acquisition conditions. Islam,
Hasan, Hossain, Alam, Uddin and Soylu (2022b);
Islam, Hasan, Hossain, Alam, Rabiul, Uddin and
Soylu (2022a).

Both datasets undergo pre-processing as follows. Since
CT slices are rectangular and have a much larger area than an
ultrasound image, we first specify a region of interest (ROI)
in each CT slice that corresponds to the desired imaging
plane of an ultrasound transducer. For usPCNL, we consider
a curvilinear ultrasound transducer with a width 𝑤 and a
fixed penetration depth 𝑑. ROI is defined as a sector-shaped
area centered within the slice, extending to a radius of 𝑤.
To standardize the ROI for further processing, the sector
image—initially in polar coordinates—is transformed into a
rectangular format through a polar-to-Cartesian conversion,
as illustrated in Fig. 2. This transformation serves two main
purposes: (1) it enables the use of a consistent simulation
approach for both linear and curvilinear array transducers,
and (2) it addresses the disparity between the typical pixel
spacing in CT images, which is generally finer than the
wavelength of the ultrasound signal.

To transform the trapezoidal ROI image into a rectan-
gular image using polar-to-Cartesian conversion, we need
to map each pixel from the polar coordinate system of the
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a) b) c)

Figure 2: Images showing the input CT slice. The region of
interest is marked with a black solid line in (a). Assuming the
transducer is centered within the slice, the extracted CT Region
of Interest (ROI) is shown in (b), before it is converted into a
rectangular image in (c).

trapezoidal ROI to the Cartesian coordinate system of the
rectangular image. This transformation involves converting
the radial distance 𝑟 and angular position 𝜃 of each pixel to
Cartesian coordinates (𝑥, 𝑦) as follows:

𝑥 = 𝑟 cos(𝜃), 𝑦 = 𝑟 sin(𝜃) (1)
where 𝑥 and 𝑦 are the horizontal and vertical coordinates of
the pixel in the rectangular image, 𝑟 is the radial distance
from the origin to the pixel in the trapezoidal ROI, 𝜃 is the
angle from a reference axis to the pixel in the trapezoidal
ROI. To perform the reverse process, converting rectangular
coordinates (𝑥, 𝑦) back to polar coordinates (𝑟, 𝜃), we use:

𝑟 =
√

𝑥2 + 𝑦2, 𝜃 = arctan
(𝑦
𝑥

)

(2)

where √

𝑥2 + 𝑦2 is the Euclidean distance from the origin
to the point, giving the radial distance 𝑟, and atan2

(

𝑦
𝑥

)

calculates the angle 𝜃 using the atan2 arctangent function,
taking into account the signs of 𝑥 and 𝑦 to determine the
correct quadrant.

Following this step, to increase spatial resolution the
ROI of two consecutive parallel images is interpolated to
create new images between the two samples. One common
method, bilinear interpolation Yun, Lee, Hong and Shim
(2023), calculates pixel values for the new slices based on
those of the neighbouring pixels in the original slices. Given
a point (𝑥, 𝑦) in the new slice, the pixel value 𝑓 (𝑥, 𝑦) can
be interpolated from the surrounding two pixels (𝑥1, 𝑦1),
(𝑥1, 𝑦2), (𝑥2, 𝑦1), and (𝑥2, 𝑦2) in the original slices:
𝑓 (𝑥, 𝑦) =(1 − 𝛼)(1 − 𝛽)𝑓 (𝑥1, 𝑦1) + 𝛼(1 − 𝛽)𝑓 (𝑥2, 𝑦1)

+(1 − 𝛼)𝛽𝑓 (𝑥1, 𝑦2) + 𝛼𝛽𝑓 (𝑥2, 𝑦2)
(3)

where
𝛼 =

𝑥 − 𝑥1
𝑥2 − 𝑥1

, and 𝛽 =
𝑦 − 𝑦1
𝑦2 − 𝑦1

(4)

Bilinear interpolation was chosen for its computational ef-
ficiency and balance between smoothness and edge preser-
vation.Preliminary comparisons with nearest-neighbour and
cubic spline methods showed that bilinear interpolation min-
imized discontinuities between slices without introducing
over-smoothing or artificial artifacts in the reconstructed 3D
volume.

This interpolation doubles the number of CT slices in the
dataset and leads to a denser volumetric image downstream,
which, as will be shown, improves image rendering. All
CT volumes had a native in-plane resolution of 0.74 ×
0.74 mm (Dataset 1) and 0.70 × 0.70 mm (Dataset 2),
with an inter-slice spacing of 1.0 mm and slice thickness
of 1.25 mm. After ROI extraction and polar-to-Cartesian
conversion, each slice was resampled to 512 × 512 pixels.
Volumetric densification was performed by inserting one
interpolated slice between every two adjacent CT slices
using bilinear interpolation, reducing the effective voxel
spacing in the z-direction to 0.5 mm. Once these CT images
are generated, the next step is to convert them into ultrasound
images based on linear acoustic principles.

3. 2D ULTRASOUND IMAGE
SIMULATION FROM CT SCANS
Simulation of ultrasound images from CT data is carried

out across all interpolated and original axial CT slices, with
the transducer assumed to be located at the center of each
slice. Various techniques have been proposed for generat-
ing ultrasound images from CT datasets. For instance, a
low-cost ultrasound simulator has been developed for ra-
diology training, where simulated images are produced by
combining an ultrasound echo map, an absorption image,
and a texture map derived from CT data; however, speckle
information is not incorporated in this approach. Burger et
al. Bürger, Abkai and Hesser (2008) proposed a method for
simulating CT-based ultrasound images by reconstructing a
three-dimensional model from CT data. They then generate
ultrasound images by simulating ray propagation, beam-
forming, and backscattering. Reichl et al. Reichl, Passenger,
Acosta and Salvado (2009) proposed the use of a compu-
tationally efficient parallel programming platform, such as
CUDA, for simulating ultrasound from CT images. In an-
other approach, Karamalis et al. Karamalis, Wein and Navab
(2010) employed the Westervelt equation to model ultra-
sound propagation through tissues and solved it using a finite
difference scheme implemented on a graphics processing
unit (GPU), enabling real-time ultrasound simulation. Two-
phase method, where in the first phase, they obtain a map of
ultrasound echo reflections for the selected region of interest
(ROI), and in the second phase, they generate a scattering
image of the ROI using Field II Jensen and Nikolov (2000);
Shams, Hartley and Navab (2008), based on linear acous-
tic principles. The final B-mode image is constructed by
merging the reflection map from phase one with the scatter
image derived in phase two. Kutter et al. Kutter, Shams,
Wein and Navab (2009) extended this work by generating
ultrasound transmission texture during phase one, which
is then combined with the reflection and scatter images.
Dillenseger et al. Dillenseger, Laguitton and Delabrousse
(2009) introduced another approach based on the convolu-
tion model suggested by Bamber and Dickinson Bamber
and Dickinson (1980). A recent technique by Szostek and
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Piorkowski Szostek and Piórkowski (2016) uses ray tracing-
based wavefront reconstruction. Salehi et al. Salehi, Ahmadi,
Prevost, Navab and Wein (2015) proposed a method for
simulating ultrasound images, utilizing a convolutional ray
tracing technique and a MRI scan segmentation portion as
input. Finally, Gao et al. Gao, Karimaghaloo, Sengupta and
Osman (2012) compared various methods for simulating
ultrasound from other imaging modalities.

Using CT images directly for scatter image generation is
suboptimal, as soft tissue delineation in CT scans is limited.
To improve contrast, a contrast stretching technique is ap-
plied, modifying the dynamic range of the image values to
the 5th and 95th percentiles, thereby minimizing the impact
of outliers. Selladurai et al. (2024); Satheesh and Thittai
(2019)

In this paper, US images are simulated based on the
physical principles of ultrasound imaging, including the
interaction of sound waves with different tissue densities and
the resulting acoustic impedance variations. The simulator
generates ultrasound images by calculating the reflection and
transmission of sound waves at tissue interfaces, producing
realistic ultrasound images Selladurai et al. (2024); Satheesh
and Thittai (2019). This is described in the next subsection.
3.1. Ultrasound Reflection and Transmission

Image Generation
To generate ultrasound reflection images of the ROI,

edge information is essential. In this study, Canny edge
detection is applied to extract the necessary edge information
and generate both the ultrasound reflection and transmission
images for a curvilinear array transducer. Specular reflection
of ultrasound signals occurs at the interface between two
media when the dimensions of the interface exceed the
wavelength of the incoming ultrasound signal. The position
of these interfaces is determined from the edge map. The
strength of the reflected signal is influenced by the acoustic
impedance mismatch between the media and the angle of
insonification. The intensity reflection coefficient (𝛼𝑅) quan-
tifies the relative amount of reflected signal Satheesh and
Thittai (2019), as expressed by:

𝛼𝑅 =
(

𝑅2 cos 𝜃𝑖 −𝑅1 cos 𝜃𝑡
𝑅2 cos 𝜃𝑖 +𝑅1 cos 𝜃𝑡

)2
(5)

where 𝜃𝑖 is the incidence angle, 𝜃𝑡 is the transmitted angle,
and 𝑅1 and 𝑅2 are the acoustic impedance of medium 1 and
medium 2, respectively. The incidence angle is calculated
as the angle between the insonification beam (emanating
radially from the curvilinear array) and the local surface
normal of the tissue boundary, estimated from the edge map
gradient. The transmitted angle was then obtained using
Snell’s law. The Hounsfield units (HU) of tissues in CT
images are reported to be approximately proportional to
their acoustic impedance and can therefore be utilized in
the calculation of the reflection coefficient, can be seen in
equation 6.

Table 1
Acoustic parameters used in ultrasound simulation.

Tissue Acoustic Impedance Attenuation Coefficient
Type (MRayl) (dB/cm⋅MHz)

Fat 1.38 0.6
Muscle 1.70 1.1
Kidneys 1.63 0.9
Stone 7.8 12.0
Water 1.48 0.002
Bone 7.8 20.0

However, air and bone do not follow this proportionality;
therefore, the intensity reflection coefficient 𝛼𝑅 is fixed at
0.99 for air–tissue interfaces and 0.4 for bone–tissue inter-
faces. The transmission coefficient is related to the reflection
coefficient by 𝛼𝑇 = 1 − 𝛼𝑅. Consequently, the ultrasound
reflected intensity at any point (𝑥, 𝑦) can be expressed as:

𝐼𝑅(𝑥, 𝑦) = 𝐼𝑎(𝑥, 𝑦) ⋅ 𝛼𝑅(𝑥, 𝑦) ⋅ cos 𝜃 (6)
where 𝐼𝑎(𝑥, 𝑦) represents the incident intensity at point
(𝑥, 𝑦), and 𝜃 is the angle between the surface normal and the
direction of ultrasound wave propagation. The transmitted
intensity at that point is calculated as the difference between
the incident and reflected intensities. The incident intensity
𝐼𝑎 at (𝑥, 𝑦) can be expressed as:

𝐼𝑎(𝑥, 𝑦) = 𝐼010−𝛼𝑑𝑓∕20 (7)
where 𝐼0 denotes the initial incident intensity, 𝛼 is the attenu-
ation coefficient 𝑑𝐵∕cm∕MHz, 𝑑 is the depth in centimeters,
and 𝑓 is the frequency in megahertz.
Acoustic Parameter Definition and Mapping from Hounsfield
Units

Acoustic impedance (𝑅) values were derived from CT
Hounsfield Units (HU) using a linear mapping function
within the soft-tissue range (−100 to +300 HU):

𝑅 = 𝑅water + 𝑘 × (𝐻𝑈 −𝐻𝑈water) (8)
where 𝑅water = 1.48 MRayl, 𝐻𝑈water = 0, and 𝑘 =

0.0006 MRayl/HU. This relationship holds for soft tissues;
for air and bone, fixed impedance values were applied since
their behavior deviates from linear proportionality. Table 1
summarizes the acoustic impedance and attenuation coef-
ficients used in Equations (5) and (7), based on literature
values Bamber and Dickinson (1980); Satheesh and Thittai
(2019).
3.2. Ultrasound Image Formation

The process of generating an ultrasound image involves
creating a scattering strength map of the ROI and calculating
the accumulated acoustic pressure field from a collection of
scatterers, from which a single radio frequency (RF) line in
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an image can be calculated. The final image combines 128
RF lines interpolated to form the B-mode ultrasound image
using principles of linear acoustics as follows:

Scattering Map Generation with Boundaries: First, an
image representing the scattering strength of the ROI is
created. Simulated boundaries are introduced by defining
lines in the scatterer map along which strong scatterers are
placed. This step enhances the realism of the simulated
ultrasound images.

Random Scatterer Distribution and Field Simulation:
Next, a large number 𝑁 of scatterers (e.g., 1,000,000) are
randomly distributed within the ROI. The scatter amplitude
and standard deviation depend on the scattering map, ensur-
ing variability in scatterer properties. Then, we calculate and
sum the acoustic pressure field 𝑝(𝑥, 𝑦, 𝑡) resulting from this
collection of scatterers at a point (𝑥, 𝑦) at time 𝑡 as

𝑝(𝑥, 𝑦, 𝑡) =
𝑁
∑

𝑖=1
𝐴𝑖𝑒

−𝑗2𝜋 𝑓0
𝑐 𝑑0 (9)

where:

𝑑0 =
√

(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 (10)

and 𝐴𝑖 is the amplitude of the 𝑖𝑡ℎ scatterer, 𝑓 is the centre
frequency of the transducer, 𝑐 is the speed of sound in the
medium, and (𝑥𝑖, 𝑦𝑖) are the coordinates of the 𝑖𝑡ℎ scatterer.
The resulting acoustic pressure field mimics the behavior
of ultrasound waves propagating through tissue. The sum
represents the contribution of each scatterer to the overall
acoustic pressure at a given point.

Calculating Scattering Strength: The scattering strength
of each scatterer can be determined based on the tissue
properties at its location. If𝜙𝑖 denotes the scattering strength
of the 𝑖𝑡ℎ scatterer given the scattering map 𝑆(𝑥, 𝑦), then:

𝜙𝑖 = 𝑆(𝑥𝑖, 𝑦𝑖) (11)
where (𝑥𝑖, 𝑦𝑖) are the coordinates of the 𝑖𝑡ℎ scatterer.

Calculating Radio Frequency (RF) Lines: To calculate a
single RF line in the ultrasound image, the responses from
a collection of scatterers are summed. If the RF line signal
at depth 𝑧 as 𝑠(𝑧), the sum of the contributions from all
scatterers within the imaging plane is:

𝑠(𝑧) =
𝑁
∑

𝑖=1
𝐴𝑖𝑒

−𝑗2𝜋 𝑓0
𝑐 𝑑1 (12)

where

𝑑1 =
√

(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2 + 𝑧2 (13)
and (𝑥𝑐 , 𝑦𝑐) and 𝑓0 are the coordinate of the transducer
centre, and the transducer’s centre frequency.

Interpolating B-Mode Ultrasound Images: Once the RF
lines are calculated, they are interpolated to form the B-mode
image. Given the RF lines at discrete depth intervals, new
RF lines at intermediate depths are generated by bilinearly
interpolating the values between adjacent RF lines.

These equations(5- 11) were implemented using the
Field II MATLAB toolbox. The next step is to combine the
created 2D ultrasound images to form a volumetric image,
from which new images can be created along arbitrary
imaging places not originally captured by the CT scans.

4. 3D ULTRASOUND IMAGE FORMATION
FROM SIMULATED 2D IMAGES
Once the ultrasound images are generated, they are

stacked together in parallel along the 𝑧 axis to form a
3D voxel. Each voxel element contains the pixel values
corresponding to a particular location in the tissue volume.
The density of the voxel increases with the number of
interpolated slices, resulting in a denser representation of
the tissue.

Given a set of 𝑀 2D ultrasound images 𝐼𝑖(𝑥, 𝑦) where
𝑖 = 1, 2, ...,𝑀 , each representing a cross-sectional view,
a 3D ultrasound volume 𝑉 (𝑥, 𝑦, 𝑧) can be constructed by
stacking these images along the z-axis:

𝑉 (𝑥, 𝑦, 𝑧) =
𝑁
∑

𝑖=1
𝐼𝑖(𝑥, 𝑦) ⋅ 𝛿(𝑧 − 𝑧𝑖) (14)

where 𝑧𝑖 represents the 𝑧-coordinate of the 𝑖𝑡ℎ image plane,
and 𝛿 is the Dirac delta function.

To form a 2D slice from the 3D voxel along a different
imaging plane, a process called slicing is performed. Slicing
involves selecting a plane within the 3D volume and extract-
ing the pixel values along that plane. Let the desired imaging
plane be defined by vector 𝐧 normal to that plane, whose tail
is at (𝑥𝑛, 𝑦𝑛, 𝑧𝑛). If (𝑥, 𝑦, 𝑧) is any point on the plane, then the
vector ⟨𝑥 − 𝑥𝑛, 𝑦 − 𝑦𝑛, 𝑧 − 𝑧𝑛⟩ lies entirely inside the plane
and must be perpendicular 𝐧, that is,

𝐧 ⋅ ⟨𝑥 − 𝑥𝑛, 𝑦 − 𝑦𝑛, 𝑧 − 𝑧𝑛⟩ = 0 (15)
If 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 are the components of 𝐧, then

𝑛𝑥(𝑥 − 𝑥𝑛) + 𝑛𝑦(𝑦 − 𝑦𝑛) + 𝑛𝑧(𝑧 − 𝑧𝑛) = 0 (16)
or rather:

𝑛𝑥𝑥 + 𝑛𝑦𝑦 + 𝑛𝑧𝑧 = 𝑑 (17)
where 𝑑 = 𝑛𝑥𝑥𝑛 + 𝑛𝑦𝑦𝑛 + 𝑛𝑧𝑧𝑛. Once the plane is defined,
it can be discretized into pixels that take the value of the
closest pixel in the 3D volume. After all pixels on the plane
are populated, the resulting 2D image from the 3D voxel can
be interpolated using the bi-linear interpolation method.

5. EXPERIMENTAL RESULTS: IMAGE
GENERATION
Each simulation level is evaluated through a series of

experiments. The fidelity of the simulated images is assessed
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by comparing them with real ultrasound images obtained
experimentally. Quantitative metrics such as image qual-
ity, contrast, and anatomical accuracy are used to evaluate
the performance of the algorithm. We used two different
datasets:

1. Dataset 1: A set of 2D CT scans and correspond-
ing 2D ultrasound images were acquired from a
CIRS triple-modality abdominal phantom. Ultrasound
imaging of the phantom was performed using a SONIX
TOUCH Q+® scanner (Ultrasonix, Analogic Corpo-
ration, Peabody, MA, USA). These ultrasound images
are used as ground truth for comparison with the
simulated ultrasound images.

2. Dataset 2: The second form Kaggle datasets Islam
et al. (2022b,a) containing CT scans with kidney
stones saved in ‘png’ format.

To evaluate the similarity between the original and sim-
ulated images, the performance metrics are used:

1) Normalized Root Mean Square Error (NRMSE):
NRMSE is a dimensionless measure that quantifies the dif-
ference between an image and a reference image, computed
as follows:

NRMSE =

√

√

√

√

√

1
𝑋 ⋅ 𝑌

𝑋
∑

𝑥=1

𝑌
∑

𝑦=1

[

𝐼𝑖𝑛(𝑥, 𝑦) − 𝐼𝑟𝑒𝑓 (𝑥, 𝑦)
]2

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
(18)

where 𝑥 and 𝑦 are the vertical and horizontal coordinates of a
given pixel, and 𝐼in and 𝐼ref represent the input and reference
images, respectively, with dimensions 𝑋 ⋅ 𝑌 , and 𝐼max and
𝐼min denote the maximum and minimum pixel values in the
images, set to 1 and 0, respectively. Here, 𝑥 and 𝑦 correspond
to the vertical and horizontal pixel coordinates, respectively.
𝐼in and 𝐼ref denote the input and reference images, each of
𝑋 ⋅ 𝑌 . The terms 𝐼max and 𝐼min represent the maximum and
minimum pixel intensities, set to 1 and 0, respectively

2) Dice Similarity Coefficient (DSC): DSC measures
similarity between two images as the ratio of twice the
intersection of two sets to the sum of the cardinalities of the
two sets. In the context of image segmentation, it quantifies
the agreement between the segmented regions and ground
truth as

DSC =
|𝑋| + |𝑌 |
2|𝑋 ∩ 𝑌 |

(19)

where 𝑋 and 𝑌 represent the sets of pixels in the segmented
region and ground truth, respectively, and |𝑋| and |𝑌 | de-
note the cardinalities of sets 𝑋 and 𝑌 , respectively. The DSC
is compared between the ground truth ultrasound image
obtained experimentally and simulated ultrasound images.

3) Structural Similarity Index Measure (SSIM): SSIM
assesses the fidelity of the simulated ultrasound images with
respect to the ground-truth images. SSIM is a perception-
based index that considers image degradation as perceived
changes in structural information, alongside changes in lu-
minance and contrast. Unlike traditional error summation

metrics such as mean squared error, SSIM provides a better
measure of perceptual similarity by evaluating correspond-
ing local patterns of pixel intensities that have been nor-
malized for luminance and contrast. The SSIM between two
equivalent sections of images 𝐼1 and 𝐼2 is defined as:

SSIM(𝐼1, 𝐼2) =
(2𝜇1𝜇2 + 𝑐)(2𝜎12 + 𝑑)

(𝜇2
1 + 𝜇2

2 + 𝑐)(𝜎21 + 𝜎22 + 𝑑)
(20)

where 𝜇1 and 𝜇2 are the mean pixel intensity of 𝐼1 and 𝐼2,
𝜎21 and 𝜎22 are their variances, and 𝜎12 the covariance. The
constants 𝑐 and 𝑑 are used to stabilize the division with
weak denominator values (typically defined as functions of
the image dynamic range). SSIM is computed locally using
a sliding window, and the final index is the mean of all
local SSIM values, ensuring that localized distortions are
accounted for across the image. The values range from −1
for no similarity to 1 for identical images.

4) Peak signal-to-noise ratio (PSNR): The PSNR be-
tween two images is used as a quality measurement be-
tween the image slice taken from volumetric data created
from sparse CT data, and the corresponding image slice
taken from the volumetric ultrasound image simulated with
augmented, interpolated CT slices along the same random
imaging plane. The higher the PSNR, the better the quality
of the reconstructed image. This is done on both datasets and
calculated as:

𝑃𝑆𝑁𝑅 = 10 log10

(

𝑅2

𝜖

)

(21)

where 𝑅 is the maximum fluctuation in the input image data,
and 𝜖 is the mean square error:

𝜖 =
∑

𝑋,𝑌 [𝐼1(𝑥, 𝑦) − 𝐼2(𝑥, 𝑦)]2

𝑋 × 𝑌
, (22)

in which 𝑋 and 𝑌 are the number of rows and columns in the
input image, respectively. While both the mean-square error
and PSNR are used to compare image compression quality,
the mean-square error represents the cumulative squared
error between the compressed and original image.

5) Speckle Quality Evaluation: To assess the visual real-
ism of the speckle pattern, we computed the Speckle Signal-
to-Noise Ratio (S-SNR) in homogeneous regions, defined as:

𝑆-𝑆𝑁𝑅 =
𝜇
𝜎

(23)
where 𝜇 and 𝜎 represent the mean and standard deviation

of pixel intensities, respectively. A higher S-SNR indicates
smoother and more uniform speckle texture.

All simulations use a curvilinear transducer with speci-
fications outlined in Table 2, positioned at the centre of an
axial CT slice. The depth of ultrasound signal penetration in
both original database images is standardized at 180 mm.
5.1. 2D image simulation

Fig. 3(a) displays an axial CT slice from Dataset 1,
with the region of interest (ROI) outlined by a solid black
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Table 2
Ultrasound transducer parameters.

Parameter Value

Operating frequency 2.5 MHz
Bandwidth 2-5 MHz
Transducer element pitch 0.47 mm
Number of elements 128
Speed of sound 1540 m/s
Sampling frequency 40 MHz

a) b) c)

 Liver Lesions

Portal Vien

Kidney 

Spine

Figure 3: Comparison between (a) ground-truth CT slice
with chosen sector ROI marked with a black solid line, (b)
simulated ultrasound image, and (c) ground-truth ultrasound
image acquired experimentally. This demonstrates the fidelity
of our simulation framework relative to actual ultrasound data

.

line. Within the ROI, the anatomy includes a superficial fat
layer (appearing dark), an underlying muscle layer (slightly
brighter than fat), the liver featuring two lesions (visible as
dark circular areas) along with the hepatic vein, the vertebra
(bright region), the abdominal aorta and vena cava (two cir-
cular structures positioned above the vertebra), and adjacent
soft tissues (darker areas) containing part of the kidney. The
simulated and actual ultrasound images are shown in Fig.
3(b) and 3(c), respectively. All of the images are displayed
at the 60 dB dynamic range. All 25 simulated ultrasound im-
ages are compared quantitatively against the corresponding
real images using RMSE, SSIM and S-SNR as metrics. The
average RMSE, DSC, SSIM for all 25 slides are respectively
0.235 ± 0.051, 0.914 ± 0.062, and 0.79± 0.05. The aver-
age S-SNR for simulated images was 1.82 ± 0.24, closely
matching the experimentally acquired ultrasound images
(1.95 ± 0.21), confirming realistic speckle characteristics.
These results show that the real and simulated ultrasound
images are closely. A RMSE closer to zero represents that
the generated images and ground truth images are quite
similar, SSIM closer to one represents the two images are
similar. Selladurai and Thittai (2018). The reported DSC
value of 0.0914 ± 0.062 reflects intensity overlap between
the simulated and ground-truth grayscale images rather than
segmentation accuracy. Since DSC is primarily intended
for binary segmentation, its numerical value appears low in
this context. Therefore, PSNR and NRMSE provide more
meaningful indicators of overall image similarity.
5.2. 3D image simulation

In both datasets, CT images are acquired with a spacing
of 1 mm and thickness of 1.25 mm. To realize a denser
volumetric ultrasound simulator, the 1 mm spacing between
the slices is further reduced to 0.5 mm using the interpolation

Table 3
PSNR for volumetric data from each dataset

Dataset Original volume Denser volume

1 18.01 ± 2.19 24.27 ± 2.56
2 16.14 ± 2.70 23.65 ± 2.94

described earlier. To this end, 25 axial CT slices were chosen
from the database and pre-processed. Bilinear interpolation
was employed between each pair of adjacent slices to gener-
ate an additional slice in between, resulting in the generation
of another 25 CT slices. These original and interpolated CT
data are further used to simulate ultrasound data, which is
then used to form a 3D volume.

Two US volumetric images were created for each dataset,
one that contained only the original 25 slices and one with
the extra 25 interpolated slices, resulting in a total of 50
slices, hereafter referred to as the denser volume.

Each US volumetric image was then sliced along the 10
arbitrary imaging planes, and the corresponding 2D images
were generated. Figure 4 illustrates examples from three
of these planes. PSNR is computed between corresponding
slices from each volume. The results, presented in Table
2,show that the denser volumetric image resulted in a PSNR
improvement of 25% and 27% for data sets 1 and 2, respec-
tively, compared to the original volumetric data, suggesting
that denser data improves image quality.

6. MULTI-LEVEL TRAINING WITH
SEGMENTATION AND FUSION
Each CT scan from Dataset 2 is segmented to identify

the kidney and surrounding anatomical structures. The
segmentation process is performed using a combination
of manual annotation and automated algorithms to en-
sure accuracy and consistency. For kidney segmentation,
a soft-tissue intensity threshold (30–80 HU) was applied
to extract renal parenchyma. Morphological closing filled
small intraparenchymal voids, while opening removed small
background fragments. The resulting binary mask captured
the overall kidney contour, providing a structural reference
for fusion Müller, Tibyampansha, Mildenberger, Panholzer,
Jungmann and Halfmann (2023). For kidney stone seg-
mentation, a higher HU threshold (>200) approach was
used to detect the calcified kidney stone, leveraging the
stone’s higher radiodensity compared to surrounding tissues
Akkasaligar, Biradar and Kumbar (2017). The final stone
masks were extracted. After segmentation, the kidney and
the kidney stone were fused with the ultrasound image. The
ultrasound overlay (red for stones, green for kidneys) pro-
vides real-time soft tissue visualization, while the segmented
CT data enhances anatomical clarity. This multimodal fusion
aids in stone localization, procedural planning, and real-time
tool guidance, see Fig. 6

The simulator is designed with a multi-level training
framework to progressively build the trainee’s expertise.
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Figure 4: (a) volumetric data formed from the original 25 CT slices, (b) ultrasound image formed from the slice shown in orange
in (a), (c) ultrasound image formed from the slice shown in blue in (a),(d) ultrasound image formed from the slice shown in green
in (a), (e) denser volumetric data formed from ultrasound images from 50 CT slices, (f) ultrasound image from the slice shown
in orange in (e), (g) ultrasound image from the slice shown in blue in (e), and (h) ultrasound image formed from the slice shown
in green in (e).

a) b)

Figure 5: (a) shows arbitrary slices, formed form volumetric
data of original 25 CT slices,(b) denser ultrasound image
arbitrary slice formed from volumetric data corresponding 00
to 50 CT slices.

Each level introduces increasing complexity and realism,
tailored to enhance specific skills required for PCNL:

Level 1 - Comprehensive image fusion: Both kidney
stones and kidney contours segmented from CT scans are
overlaid on ultrasound images. Fig. 6 shows a simulated slice
(a), (b) shows the arbitrary slice taken from the volumetric
image shown in (c). This level provides a comprehensive
visual representation, allowing trainees to focus on tool
steering towards the stones.

Level 2 - Anatomical recognition: Kidney stone images
are removed, and trainees only see the ultrasound images
fused with kidney images. Fig. 6 shows the result segmented
from the CT scan, shows the arbitrary slice taken from (c).
This level emphasizes anatomical recognition and naviga-
tion without the presence of stones.

Level 3 - Procedural Challenge: Only the segmented
Kidney and overlaid on real-time ultrasound images and kid-
ney contour images are not provided. This level challenges
trainees to identify and navigate towards the stones without
the aid of kidney contours.

Level 4 - Realistic Complexity: All images segmented
from CT scans are removed, and varying levels of ultrasound
attenuation 𝛼, ranging from 0 to 1.5 in dB cm−1 MHz−1,
are introduced to simulate different tissue densities and com-
plexities. This level mimics real-world challenges and trains
users to recognize the kidneys and stones in poor visibility
conditions. Segmentation overlays can be re-enabled during
specific scenarios to support decision-making. For example,
obese patients have more acoustic attention, making it chal-
lenging to find the kidney and stones.

To support effective skill acquisition, the training frame-
work was designed with progressive levels of difficulty. In
the initial stages, kidney and stone contours are explicitly
displayed, serving as visual scaffolds that reduce cogni-
tive load and guide novice trainees in orienting themselves
within the ultrasound image. These cues help learners estab-
lish a foundational understanding of the relevant anatomy
and spatial relationships. As the levels advance, these vi-
sual aids are gradually removed. This stepwise reduction
encourages learners to independently recognize anatomi-
cal structures and pathologies, thereby strengthening image
interpretation skills without reliance on external overlays.
Such a progression is consistent with competency-based
training principles, in which learners transition from guided
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Figure 6: Assistance levels. In Level 1 both kidney stones and the kidney contours are overlaid on top of real-time ultrasound
images. In Level 2, segmented images of the kidney stones are removed. In Level 3 only kidney stones from CT slices are overlaid
on top of real-time ultrasound and the kidney contours are not provided. (a) is taken directly from a 2D ultrasound image
corresponding to a 2D CT scan. (b) is taken from an arbitrary imaging plane from the volume shown in (c).

practice toward autonomous performance. The design en-
sures that skills developed in the simulated environment are
transferable to real clinical scenarios, where no such visual
cues are available.

To quantitatively compare the fused and unfused ultra-
sound images quality in Levels 1 to 3, we use contrast as
a performance metric. Contrast is computed as the stan-
dard deviation (C) of pixel intensities, which represents the
dispersion of intensity values around the mean. A higher
standard deviation indicates better contrast, enhancing the
visibility of image features. The contrast is given by:

𝐶 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝜇)2 (24)

where 𝑥𝑖 represents individual pixel intensity values, 𝜇 is
the mean intensity, and 𝑁 is the total number of pixels. As
expected, the results summarized in Fig. 8 confirm that the

addition of the segmented images improves the identification
of critical anatomical structures.

Finally, DSC and SSIM were computed for the images
in Level 4 by comparing simulated images with varying
attenuation levels against the reference image generated
at the ideal (zero) attenuation level. For each attenuation
setting, 10 images were analyzed. At an attenuation level
of 0.5 dB ⋅ cm−1 ⋅ MHz−1, the DSC and SSIM values were
0.903 ± 0.162 and 0.86 ± 0.04, respectively. These values
decreased to 0.65 ± 0.92 (DSC) and 0.69 ± 0.06 (SSIM) at
an attenuation level of 1.5 dB ⋅ cm−1 ⋅ MHz−1. This trend
indicates that as attenuation increases, structural information
in the images progressively diminishes. As summarized in
Table 3, the denser volumetric image resulted in consistent
PSNR improvement across both datasets. The average PSNR
increased from 18.01 to 24.27 dB for Dataset 1 (34.8%
improvement) and from 16.14 to 23.65 dB for Dataset 2
(46.5% improvement).These results confirm that denser CT
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Figure 7: Level 4 removes all images segmented from CT scans and introduces increasing levels of ultrasound attenuation,
simulating different tissue densities ((a) to (d) with attenuation of 0 to 1.5 dB cm−1 MHz−1) and complexities to mimic real-world
challenges. In cases where the kidney guidance is needed, the segmentation can be turned on like in Level 1. This will train the
user to recognize the kidney and the stones in poor visibility conditions.

Figure 8: Contrast for fused ultrasound and segmented CT
images taken from the volumetric image along an arbitrary
imaging plane.

interpolation substantially enhances simulated ultrasound
image quality and structural fidelity.

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed a method to generate volumet-

ric ultrasound images from 2D CT scans, laying the ground-
work to create a virtual reality simulator tailored specifically
for usPCNL. Our approach addresses the challenge of lim-
ited spatial resolution in CT scans by employing interpola-
tion techniques to augment the image density, resulting in a
higher-resolution CT data. These augmented CT scans were
then converted into ultrasound images based on principles of
linear acoustics and spatial impulse response. Performance
evaluation of the image generation algorithm using normal-
ized RMSE, SSIM, DSC, and PSNR demonstrates its ef-
fectiveness in accurately simulating ultrasound images from
CT data. The comparison between simulated and ground-
truth ultrasound images shows small differences, indicating
acceptable simulation fidelity. The results also show that
denser CT scan data led to a significant improvement in
ultrasound image quality obtained along an imaging plane
not captured in the original data. The ability to generate

ultrasound images along arbitrary imaging planes not orig-
inally captured in the CT scans expands the versatility and
effectiveness of the simulator for training scenarios.

Expanding this methodology to incorporate dynamic
anatomical changes, such as tissue deformation and organ
motion, would further enhance the realism of the simula-
tion. Furthermore, the scalability of our approach should
be explored to accommodate variations in patient anatomy
and pathology. Customization options tailored to individual
patient cases would enable personalized training scenarios,
catering to diverse clinical situations encountered in real-
world practice. Lastly, collaborative efforts with medical ed-
ucators and practitioners would be invaluable in refining the
image-processing functionality and ensuring its alignment
with training objectives and clinical standards. By incorpo-
rating feedback from experts in the field, we can iteratively
improve the simulation platform to better serve the needs
of trainees and ultimately contribute to improved patient
outcomes in usPCNL procedures. Moreover, we intended to
explore machine learning techniques to personalize training
scenarios based on individual trainee performance and learn-
ing needs. Ultimately, a high fidelity simulator will enable
trainees to practice usPCNL procedures on patient-specific
data before entering the operating room, enhancing their
skills and improving patient outcomes.

In conclusion, this preliminary work represents an im-
portant step towards the development of an ultrasound 3D
volumetric framework for usPCNL training, which can ul-
timately improve patient outcomes and safety in clinical
practice. The integration of ultrasonography in PCNL brings
forth several advantages, including real-time imaging, re-
duced radiation exposure, and improved precision in stone
targeting. These factors collectively contribute to enhanced
procedural outcomes and patient safety. Despite the promis-
ing findings, challenges such as operator dependence, and
a steeper learning curve must be acknowledged. Further
research is needed to address these limitations and refine
the technique. This highlights the growing body of evi-
dence supporting the use of usPCNL. The integration of
ultrasonography offers potential advantages in stone clear-
ance rates, safety profiles, and procedural outcomes. Future
research should focus on standardized protocols, operator
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training, and long-term follow-up to establish the role of
ultrasonography as a routine imaging modality in PCNL
procedures.

The complexity of ultrasound-guided PCNL necessitates
the development of advanced simulation tools to enhance
clinician training and skill development. This study presents
the development of a 3D-dense ultrasound image simulator
derived from 2D CT scans. The real time ultrasound image
will fuse information from the CT scan, see below.

Segmented kidney images from CT scans are fused on
top of the US images to enhance visualization of the kidney
under ultrasound. The simulator uses a multi-level approach
with an increasing level of complexity and realism, tailored
to progressively build the trainee’s expertise.

In Level 1 (easiest) we segment both kidney stones and
the kidney contours from CT scans, and overlay them on
top of real-time ultrasound images. This provides a com-
prehensive visual representation of the analytical structures,
allowing the trainee to focus solely on tool steering towards
the stones;

In Level 2 images of the kidney stones are removed.
The trainee only sees the real time ultrasound images fused
with kidney images segmented from the CT scan, enabling
trainees to concentrate on anatomical recognition and nav-
igation without the presence of stones. Level 3 segments
kidney stones from CT slices and overlays them on top of
real-time ultrasound (kidney contour images form CT scans
are not provided)

Level 4 removes all images segmented from CT scans
and introduces increasing levels of ultrasound attenuation,
simulating different tissue densities and complexities to
mimic real-world challenges. In cases where actuation is
completing diring the kidney, the segmentation can be
turned on like in Level 1. This will train the user to recognize
the kidney and the stones in poor visibility conditions.

The simulator is designed to progress from basic to ad-
vanced levels of complexity, mirroring the increasing chal-
lenges faced in actual PCNL procedures. By incorporating
these levels, the simulator aids in anatomical and procedural
training while also introducing users to the subtleties of
ultrasound imaging, such as varying tissue densities and at-
tenuation effects. This progressive training framework aims
to improve procedural accuracy, enhance clinical decision-
making, and ultimately reduce the learning curve associated
with PCNL. A limitation of the current work is the omission
of surgical instrument modelling. In future iterations, we
plan to represent instruments as high-scattering objects,
distinct from stones, to simulate tool tracking is a crucial
feature in PCNL training.

Some limitations in image quality remain. These primar-
ily arise from the restricted spatial resolution of the preop-
erative CT datasets, the inherent challenges of modelling
complex ultrasound physics, and the computational trade-
offs necessary for efficient simulation. To objectively assess
image fidelity, we have reported NRMSE, DSC, PSNR, and

SSIM values, demonstrating quantitatively that the simu-
lated images provide a sufficient basis for anatomical recog-
nition and procedural training. Further improvements in
image quality are anticipated as higher resolution datasets
and future work will be directed toward further improvement
in image realism and computational modelling.

The present simulation framework assumes linear acous-
tic propagation and a simplified mapping from Hounsfield
Units to acoustic impedance, which does not fully capture
tissue-dependent heterogeneity or beam-hardening effects.
Speckle generation is based on randomly distributed scat-
terers rather than microstructural tissue properties, which
may limit realism in highly heterogeneous regions. Future
work will integrate nonlinear propagation models, improved
impedance estimation, and biomechanical deformation to
enhance realism. Also our framework is fundamentally con-
strained by the resolution of the CT data used for volumetric
reconstruction. Anatomical details smaller than the slice
spacing cannot be fully captured, which may reduce fidelity
in regions containing subtle structures. To mitigate this
limitation, interpolation between adjacent slices was em-
ployed. Moreover, intraoperative anatomical changes—such
as respiratory motion, patient positioning, and tissue de-
formation—are not yet incorporated into the simulation.
Modelling deformable and dynamic anatomy is essential for
realistic training environments. Future efforts will therefore
focus on integrating deformable models and dynamic simu-
lations to more accurately replicate intraoperative conditions
and enhance clinical applicability.

This study evaluates the technical aspects of each sim-
ulation level, the fidelity of the simulated images, and the
potential impact on clinical training outcomes. The results
highlight the potential of this 3D simulator to significantly
enhance clinician training for usPCNL. Future directions
include its integration into standard training protocols to
improve procedural success rates and patient outcomes. The
simulated volumetric ultrasound framework can be inte-
grated with haptic devices to provide force-feedback during
needle puncture, further improving procedural realism. Ad-
ditionally, the system is compatible with augmented reality
(AR) overlays, enabling AR-guided renal access planning
and enhancing spatial understanding during training. These
extensions constitute promising future directions for a fully
immersive usPCNL simulation platform.
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