MECE 3350U
Control Systems

Lecture 11
 The Root-Locus Method 1/2

Outline of Lecture 11

By the end of today's lecture you should be able to

- Understand the influence of uncertainties in a control system
- Understand the applications of the Root-Locus method
- Apply Root-Locus method to a given system

Applications

A aircraft closed-loop roll angle controller must ensure that the response time is 1 sec and the maximum overshoot is less than 15%.

What happens the performance of the controller change is the mass of the aircraft changes during the flight?

Applications

You were requested to design a cruise speed controller for a high speed train. The mechanical team requires your controller to be over-damped so that acceleration and traction is minimized.

How would be controller perform if the friction between the wheels and the rail changes due to heat or snow?

Influence of pole locations

To evaluate the influence of a parameter of interest k, we would have to compute the location of the poles for different values k.

The Root-Loci method provides an alternative tool for analysis.

Influence of pole locations
The unknown parameter k affects the location of poles and therefore the response of the system to an input.

What value of k should I choose to meet my system performance requirements? If the value of k is exactly as predicted, what is the effect of a variation of k on my system?

Brute-force method:

Controller design via root-locus

The damping ratio must be within a certain range.
The time for exponential decay to half is specified.
The undamped frequency of oscillation is specified.

The root-locus method

Consider the following closed-loop system:

The closed-loop transfer function is

$$
\begin{equation*}
T(s)=\frac{k G(s)}{1+k G(s)} \tag{1}
\end{equation*}
$$

And the characteristic equations is

$$
\begin{equation*}
1+k G(s)=0 \tag{2}
\end{equation*}
$$

The root-locus method
Example: How does the poles of the closed loop function change as a function of A ?

$$
\frac{Y(s)}{R(s)}=\frac{\frac{A}{s(s+1)}}{1+\frac{A}{s(s+1)}}
$$

The characteristic equation is

$$
1+A \frac{1}{s(s+1)}=0 \rightarrow 1+A \frac{Q(s)}{P(s)}=0
$$

When $A=0$, the poles of the closed-loop satisfy $P(s)=0$, i.e., $p_{1}=0$, $p_{2}=-1$.

When $A \rightarrow \infty$, the poles of the closed-loop satisfy $\quad Q(s)=0$

The root locus method

$$
\frac{Y(s)}{R(s)}=\frac{\frac{A}{\frac{A}{(s+1)}}}{1+\frac{A}{s(s+1)}}
$$

Alternatively, the characteristic equation is

$$
\begin{equation*}
s^{2}+s+A=0 \tag{3}
\end{equation*}
$$

Using the quadratic function, the roots are

$$
\begin{equation*}
p_{1}, p_{2}=-\frac{1}{2} \pm \frac{\sqrt{1-4 A}}{2} \tag{4}
\end{equation*}
$$

The root locus method

To analyse the influence of a given parameter of interest k, the characteristic equation must in the format

$$
\begin{equation*}
1+k H(s)=0 \tag{5}
\end{equation*}
$$

$\Rightarrow k$ is the parameter of interest
stardard form for root locus $\Rightarrow H(s)$ is a function of s aralysin

The root locus is the set of values of s for which $1+k H(s)=0$ is satisfied as the real parameter k varies from 0 to ∞.

The root locus method
If k is the parameter of interest in the open loop transfer function, how do write the characteristic equation as $1+k H(s)=0$?

The characteristic equations is

Angle requirement

$$
\begin{equation*}
1+k G(s)=0, k G(s)=-1+j 0 \tag{6}
\end{equation*}
$$

If the open loop transfer function is

$$
\begin{equation*}
G(s)=k \frac{\left(s+z_{1}\right)\left(s+z_{2}\right)\left(s+z_{3}\right) \ldots\left(s+z_{m}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right)\left(s+p_{3}\right) \ldots\left(s+p_{n}\right)} \tag{7}
\end{equation*}
$$

The magnitude requirement for root locus is

$$
\begin{equation*}
|G(s)|=k \frac{\left|s+z_{1}\right|\left|s+z_{2}\right|\left|s+z_{3}\right| \ldots\left|s+z_{m}\right|}{\left|s+p_{1}\right|\left|s+p_{2}\right|\left|s+p_{3}\right| \ldots\left|s+p_{n}\right|}=1 \tag{8}
\end{equation*}
$$

The angle requirement for root locus is

$$
\begin{aligned}
\angle G(s)= & \angle\left(s+z_{1}\right)+\angle\left(s+z_{2}\right)+\ldots \\
& -\left[\angle\left(s+p_{1}\right)+\angle\left(s+p_{2}\right)+\ldots\right]=180^{\circ}+\ell 360^{\circ}
\end{aligned}
$$

where $\ell=1,2,3 \ldots$

Angle requirement

Consider the function

$$
\begin{equation*}
W(s)=k \frac{s+0.4}{s^{2}(s+3.6)} \tag{9}
\end{equation*}
$$

The root locus are the points where

$$
\begin{equation*}
\angle\left[k \frac{s+0.4}{s^{2}(s+3.6)}\right]=180^{\circ}+\ell 360^{\circ} \tag{10}
\end{equation*}
$$

which can be rewritten as

$$
\begin{equation*}
\angle(s+0.4)-2 \angle(s)-\angle(s+3.6)=180^{\circ}+\ell 360^{\circ} . \tag{11}
\end{equation*}
$$

Since $s=\sigma+j \omega$

$$
\begin{equation*}
\angle(\sigma+j \omega+0.4)-2 \angle(\sigma+j \omega)-\angle(\sigma+j \omega+3.6)=180^{\circ}+\ell 360^{\circ} \tag{12}
\end{equation*}
$$

and $\angle s=\tan ^{-1}(\omega / \sigma)$, the root locus function is

$$
\begin{equation*}
\tan ^{-1}\left(\frac{\sigma}{\omega+0.4}\right)-2 \tan ^{-1}\left(\frac{\sigma}{\omega}\right)-\tan ^{-1}\left(\frac{\sigma}{\omega+3.6}\right)=180^{\circ}+\ell 360^{\circ} \tag{13}
\end{equation*}
$$

10 rules for drawing the root-locus

Rule 1: As k varies from 0 to ∞, there are n lines (loci) where n is the degree of $Q(s)$ or $P(s)$, whichever is greater.

$$
1+k \frac{H(s)}{\frac{Q(s)}{P(s)}}=0
$$

Rule 2. As k varies from 0 to ∞, the roots of the characteristic equation move from the poles of $H(s)$ (when $P(s)=0)$ to the zeros of $H(s)(Q(s)=0)$.

$$
P(s)+k Q(s)=0, \quad \frac{1}{k} P(s)+Q(s)=0
$$

10 rules for drawing the root-locus

Rule 3: The root loci must be symmetrical with respect to the horizontal axis.
Rule 4: The a root cannot cross its path

10 rules for drawing the root-locus

Rule 6. Lines leave (break out) and enter (break in) the real axis at 90°

Rule 7: If there a different number of poles and zeros, extra lines that do not have a pair go to or come from infinity.
$\rightarrow n-m$ lines go to

$$
n-m=1
$$

$$
n-m=2
$$

2 lines $\rightarrow \infty$

10 rules for drawing the root-locus
Rule 8: The angle of the asymptotes of the curves that go to infinity is

$$
\begin{equation*}
\theta=\frac{180^{\circ}+360^{\circ}(q-1)}{n-m}, q=1,2, \ldots, n-m \tag{14}
\end{equation*}
$$

n is the order $P(s), m$ is the order of $Q(s)$ thus $n-m$ is the number of unmatched poles.

The asymptote radiates out from the point $s=\alpha$ on the real axis where

$$
\begin{equation*}
\alpha=\frac{\sum \text { poles }-\sum \text { zeros }}{n-m} \tag{15}
\end{equation*}
$$

10 rules for drawing the root-locus

Rule 9: If there are a least two lines that go to infinity, then the sum of all the roots is constant.

Practical applications: As k increases, the real root moves to the left twice as fast as the conjugate roots approach the imaginary axis.

10 rules for drawing the root-locus

Rule 10: If the k sweeps from 0 to $-\infty$, the root loci can be drawn by reversing Rule 5 and adding a 180° to the asymptote angles.

Exercise 50

Determine the root-locus plot for the following transfer function.

$$
\begin{equation*}
G(s)=k \frac{s+2}{2 s+1} \tag{16}
\end{equation*}
$$

Exercise 51

Determine the root-locus plot for the following transfer function.

$$
\begin{equation*}
q=1 \tag{17}
\end{equation*}
$$

$$
\theta^{7}=\frac{180^{\circ}+360(g-1)}{1}
$$

$$
\theta=180^{\circ}
$$

Exercise 52

Determine the root-locus plot for the following transfer function.

$$
\begin{align*}
& n-m=2 \\
& q=1,2 \text {. } \\
& G(s)=\frac{K}{(2 s+1)(s+1)} \tag{18}\\
& q=1 \\
& \theta_{1}=\frac{180 \pm 360(q-1)}{n-m} \\
& \theta_{1}=9 \theta^{\circ} \\
& q=2 \\
& \theta_{2}=27 \theta^{\circ}\left(\theta-9 \theta^{\circ}\right) \\
& \alpha=\frac{\sum p-\sum z}{n-m} \\
& \alpha=\frac{-0.5-1-0^{v}}{2} \\
& \alpha=-0.75 \\
& \text { centre of } \\
& 25 y m \text { plates }
\end{align*}
$$

Exercise 53

$$
\begin{aligned}
& n=4 \\
& m=2
\end{aligned}
$$

0 zeros
X poles
Determine the root-locus plot for the following transfer function.

$$
\begin{array}{ll}
n-m=2 & G(s)=k \frac{(s+2)(s-2)}{(s+1)(s+0.5)(s+0.1)(s-1)} \tag{19}\\
\theta=\frac{180^{\circ}+360^{\circ}(q-1)}{2} \\
q=1 \\
\theta=9 \theta^{\circ} \\
q=2 \\
\theta=-9 \theta^{\circ} \\
\alpha=\frac{\sum p-\sum z}{n-m} \\
\alpha=\frac{(-1-0.5-0.1+1)-(2-2)}{2}=-0.3
\end{array}
$$

Exercise 54
$n-m=3$
$\rightarrow 3$ lines go to $\infty \rightarrow g=1,2,3$
Determine the root-locus plot for the following transfer function.

$$
\begin{align*}
& \theta=\frac{180^{\circ}+360^{\circ}(q-1)}{n-m} \quad G(s)=\frac{K}{(2 s+1)(s+1)(0.5 s+1)} \tag{20}\\
& q=1 \\
& \theta_{1}=60^{\circ} \\
& q=2 \\
& \theta_{2}=180^{\circ} \\
& q=3 \\
& \theta_{3}=300^{\circ} \\
& \quad\left(0 r-60^{\circ}\right) \\
& \alpha=-\frac{2-1-0.5}{3}=1.16
\end{align*}
$$

Exercise 55

Determine the root-locus plot for the following transfer function.

$$
\begin{align*}
& \theta_{1}=9 \theta_{0} \tag{21}\\
& \theta_{2}=-9_{\theta}{ }^{\circ} \\
& \alpha=0.5
\end{align*}
$$

Exercise 56

Homework

check the solution with Matlab

Determine the root-locus plot for the following transfer function.

$$
\begin{equation*}
G(s)=\frac{K}{s(s+1)(s+2)} \tag{22}
\end{equation*}
$$

Exercise 57

Home work

Determine the root-locus plot for the following transfer function.

$$
\begin{equation*}
G(s)=k \frac{(s+3)(s+4)}{(s+1)(s+2)} \tag{23}
\end{equation*}
$$

Exercise 58

$$
n-m=4-1=3
$$

Determine the root-locus plot for the following transfer function.

$$
\begin{equation*}
G(s)=K \frac{(s+1)}{s(s+2)(s+4)^{2}} \rightarrow \text { double pole } \tag{24}
\end{equation*}
$$

$$
\begin{aligned}
& \theta_{1}=60^{\circ} \\
& \theta_{2}=180^{\circ} \\
& \theta_{3}=300^{\circ}\left(\operatorname{cor}-60^{\circ}\right)
\end{aligned}
$$

Exercise 59

Homework

A controller for closed-loop feedback system is to be designed to stabilize the system shown. In order to simply the controller, the electrical team recommended that a proportional controller should be used.

Can the system be stabilized if $G(s)=k$, with $0 \leq k<\infty$?

Exercise 59-continued

Next class...

- More on the root locus method

