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Outline of Lecture 17

By the end of today’s lecture you should be able to

• Represent magnitude and phase in a Bode plot

• Draw the Bode plot for functions having complex poles
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Frequency response

Frequency response: The steady-state response of the system to a sinusoidal
input signal.

y(t) = AM sin(ω0t + φ) (1)

where A the amplitude of the input signal and

M = |G(jω0)| = |G(s)|s=jω0 =
√

[<G(jω0)]2 + [=G(jω0)]2

∠G(jω0) = φ = tan−1
(
<[G(jω0)]
=[G(jω0)]

)
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Bode plots

The vertical axis shows the phase φ and gain 20 log(G(jω))

The horizontal axis is logarithmic log10(ω)
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Bode plots - review

Given a transfer function

G(s) = k
∏n

i=1(s + zi )∏m
i=1(s + pi )

(2)

The gain is

[G(jω)| = 20 log
[

k
∏n

i=1(jω + zi )∏m
i=1(jω + pi )

]
(3)

Since log(a × b) = log(a) + log(b), we can rewrite the gain as

[G(jω)| = 20 log(k) +
n∑

i=1

[20 log(jω + zi )] +
m∑

i=1

[
20 log 1

(jω + pi )

]
(4)

Thus, if we know the Bode plot of basic functions, we can sketch the Bode
diagram of G(s).
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Bode plots - review
Given a transfer function

G(s) = k
∏n

i=1(s + zi )∏m
i=1(s + pi )

(5)

The phase is

∠[G(jω)| = φ = tan−1
[
=[G(jω)]
<[G(jω)]

]
(6)

φ = ∠(k) +
n∑

i=1

[∠(jω + zi )] +
m∑

i=1

[
∠

1
jω + pi

]
(7)

Thus, if we know the Bode plot of basic functions, we can sketch the Bode
diagram of G(s).
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Bode plot building blocks - review

1 - Constant gain

→ Gain: |k| or 20 log(|k|)

→ Phase: φ = 0 ∀ ω if k > 0, −180◦ otherwise

2 - Pole at the origin

→ Gain: −20 log(ω)

→ Phase: −90◦ ∀ ω
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Bode plot building blocks - review
3 - Zero at the origin

→ Gain: 20 log(ω)

→ Phase: 90◦ ∀ ω
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Note that this is the negative of a pole at the origin:
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Bode plot building blocks - review

4 - Real pole: G(s) = 1
s
ω0

+1 , ω0 ∈ <∗

ω << ω0 ω = ω0 ω = ω0

Gain 0 −3 dB −20 log
√

ω
ω0

Phase 0 −45◦ −90◦
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Bode plot building blocks - review

5 - Real zero: G(s) = s
ω0

+ 1, ω0 ∈ <∗

ω << ω0 ω = ω0 ω = ω0

Gain 0 +3 dB 20 log
√

ω
ω0

Phase 0 45◦ 90◦
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The real zero is the negative of a real pole on the Bode plot
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Exercise 100

Draw the approximate Bode plot of the transfer function

G(s) = (s + 10)
(s + 1)2(s + 100)
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Exercise 100 - continued

Draw the approximate Bode plot of the transfer function

G(s) = (s + 10)
(s + 1)2(s + 100)
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Exercise 100 - continued

Result using Matlab
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Bode plot building blocks

6 - Complex conjugate poles G(s) = ω2
0

s2+2ζω0s+ω2
0

The equation can be rearranged as

G(s) = 1( s
ω0

)2 + 2ζ
( s
ω0

)
+ 1

→ G(jω) = 1
−
(
ω
ω0

)2 + 1 + j2ζ
(
ω
ω0

) (8)

G(jω) = 1
−
(
ω
ω0

)2 + 1 + j2ζ
(
ω
ω0

) × − ( ωω0

)2 + 1− j2ζ
(
ω
ω0

)
−
(
ω
ω0

)2 + 1− j2ζ
(
ω
ω0

) (9)

G(jω) =
1−

(
ω
ω0

)2[
1−

(
ω
ω0

)2
]2

+
[
2ζ
(
ω
ω0

)]2
+ j

−2ζ
(
ω
ω0

)[
1−

(
ω
ω0

)2
]2

+
[
2ζ
(
ω
ω0

)]2
(10)
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Bode plot building blocks

G(jω) =
1 −
(
ω
ω0

)2[
1 −
(
ω
ω0

)2
]2

+
[
2ζ
(
ω
ω0

)]2
+ j

−2ζ
(
ω
ω0

)[
1 −
(
ω
ω0

)2
]2

+
[
2ζ
(
ω
ω0

)]2

Case 1: ω << ω0,

→ Thus: ω/ω0 ≈ 0 and G(jω) simplifies to

G(jω) ≈ 1 + 0j

→ The gain is 20 log(
√
12 + 00) = 0 dB

→ The phase is φ = tan−1( 0
1 ) = 0◦
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Bode plot building blocks

G(jω) =
1 −
(
ω
ω0

)2[
1 −
(
ω
ω0

)2
]2

+
[
2ζ
(
ω
ω0

)]2
+ j

−2ζ
(
ω
ω0

)[
1 −
(
ω
ω0

)2
]2

+
[
2ζ
(
ω
ω0

)]2

Case 2: ω >> ω0

→ Thus G(jω) simplifies to

G(jω) ≈ − 1(
ω
ωn

)2 − j 2ζ(
ω
ω0

)3

→ The gain is

G = 20 log

√[
−
(
ω

ωn

)−2
]2

+
[
−2ζ

(
ω

ω0

)−3
]2

≈ 20 log
(
ω

ω0

)−2

G = −40 log
(
ω

ω0

)
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Bode plot building blocks
0

Still when ω >> ω0, let us look at the phase:

G(jω) ≈ − 1(
ω
ω0

)2 − j 2ζ(
ω
ω0

)3

φ = tan−1

[
−2ζ

(
ω
ω0

)−3

−
(
ω
ω0

)−2

]
= tan−1

[
2ζ ωn

ω

]
︸ ︷︷ ︸
→0

= −180◦

Why −180◦ instead of 0◦?
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Bode plot building blocks

G(jω) =
1 −
(
ω
ω0

)2[
1 −
(
ω
ω0

)2
]2

+
[
2ζ
(
ω
ω0

)]2
+ j

−2ζ
(
ω
ω0

)[
1 −
(
ω
ω0

)2
]2

+
[
2ζ
(
ω
ω0

)]2

Case 3: ω = ω0

→ Thus G(jω) simplifies to

G(jω) = 0− j
(

1
2ζ

)
→ The gain is

G = 20 log

√(
−1
2ζ

)2

= 20 log(2ζ)−1 = −20 log(2ζ)

ζ = 0.5, G = 0 dB
ζ < 0.5, there is a peak at ω = ω0
ζ > 0.5, there is a negative gain at ω = ω0
ζ = 0, G(ω = ω0) →∞
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Bode plot building blocks

When ω = ω0, the phase is

G(jω) = 0− j
(

1
2ζ

)

φ = tan−1
(
−

1
2ζ

c

)
c→0

= −90◦

In summary

ω << ωn ω >> ωn ω = ωn

Gain 0 −40 dB/decade −20 log(2ζ)

Phase 0◦ -180◦ −90◦

Notice that this analogous to having two equal real poles.
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Bode plot building blocks
Summary - Bode plots for complex poles

ω << ωn ω >> ωn ω = ωn

Gain 0 −40 dB/decade −20 log(2ζ)

Phase 0◦ -180◦ −90◦
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Influence of the damping ratio

G(s) = 1
s2 + 2ζs + 1
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Resonance frequency

The frequency at which the gain reaches its maximum value is called the
resonance frequency.

The resonance frequency satisfies ω = ωr

∂

∂ω

√√√√√√
 1 −

(
ω
ω0

)2[
1 −
(
ω
ω0

)2
]2

+
[

2ζ
(
ω
ω0

)]2


2

+

 −2ζ
(
ω
ω0

)[
1 −
(
ω
ω0

)2
]2

+
[

2ζ
(
ω
ω0

)]2


2

= 0

ωr = ω0
√

1− 2ζ2, for ζ <
√
2
2 (11)

Thus, the maximum value Mω of |G(jω)| is

Mω = 1
2ζ
√

1− ζ2
, for ζ <

√
2
2 (12)
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Exercise 101
The frequency response of a dynamic system has many practical applications
and is often used in order to estimate the system parameters. Knowing that a
system transfer function is

G(s) = k s
(s + a)(s2 + 20s + 100)

And its frequency response is shown in the Bode plot, determine k and a.
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Exercise 101 - continued
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Exercise 101 - continued
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Exercise 102

A low-pass filter is a filter that passes signals with a frequency lower than a
certain cut-off frequency and attenuates signals with frequencies higher than
the cut-off frequency. A hypothetical filter has the transfer function

G(s) = 4
(s2 + s + 1)(s2 + 0.4s + 4)

Sketch its frequency response.
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Exercise 102 - continued

G(s) = 4
(s2 + s + 1)(s2 + 0.4s + 4)
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Exercise 102 - continued
ω0 = 1 rad/s and ω0 = 2 rad/s (complex poles).
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Exercise 103

The experimental oblique wing aircraft has a wing that pivots. Its control
system loop transfer function is

G(s) = 4(0.5 + 1)

s(2s + 1)
[( s

8

)2 + s
20 + 1

]

Sketch its frequency response.
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Exercise 103 - continued

G(s) = 4(0.5 + 1)

s(2s + 1)
[( s

8

)2 + s
20 + 1

]
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Exercise 103 - continued

M
ag

ni
tu

de
 (

dB
)

P
ha

se
 (

de
g)

Frequency (rad/s)

MECE 3350 - C. Rossa 31 / 33 Lecture 17



32/33

Exercise 104 - Matlab problem

Consider the closed-loop transfer function

R(s) = 30
s2 + s + 30

Develop a Matlab code to obtain the Bode plot and verity that the resonant
frequency is 5.44 rad/s and that the peak magnitude is 14.8 dB.

Compare the results of you code with the results of "Bode(R)" function.
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Next class...

• Stability in the frequency domain
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