MECE 3350U
Control Systems

Lecture 17
 Bode Plots 2/2

Outline of Lecture 17

By the end of today's lecture you should be able to

- Represent magnitude and phase in a Bode plot
- Draw the Bode plot for functions having complex poles

Frequency response

Frequency response: The steady-state response of the system to a sinusoidal input signal.

where A the amplitude of the input signal and

$$
\begin{gathered}
M=\left|G\left(j \omega_{0}\right)\right|=|G(s)|_{s=j \omega_{0}}=\sqrt{\left[\Re G\left(j \omega_{0}\right)\right]^{2}+\left[\Im G\left(j \omega_{0}\right)\right]^{2}} \\
\angle G\left(j \omega_{0}\right)=\phi=\tan ^{-1}\left(\frac{\Re\left[G\left(j \omega_{0}\right)\right]}{\Im\left[G\left(j \omega_{0}\right)\right]}\right)
\end{gathered}
$$

Bode plots
The vertical axis shows the phase ϕ and gain $20 \log (G(j \omega))$
The horizontal axis is logarithmic $\log _{10}(\omega)$

Bode plots - review

Given a transfer function

$$
\begin{equation*}
G(s)=k \frac{\prod_{i=1}^{n}\left(s+z_{i}\right)}{\prod_{i=1}^{m}\left(s+p_{i}\right)} \tag{2}
\end{equation*}
$$

The gain is

$$
\begin{equation*}
\left[G(j \omega) \left\lvert\,=20 \log \left[k \frac{\prod_{i=1}^{n}\left(j \omega+z_{i}\right)}{\prod_{i=1}^{m}\left(j \omega+p_{i}\right)}\right]\right.\right. \tag{3}
\end{equation*}
$$

Since $\log (a \times b)=\log (a)+\log (b)$, we can rewrite the gain as

$$
\begin{equation*}
\left[G(j \omega) \left\lvert\,=20 \log (k)+\sum_{i=1}^{n}\left[20 \log \left(j \omega+z_{i}\right)\right]+\sum_{i=1}^{m}\left[20 \log \frac{1}{\left(j \omega+p_{i}\right)}\right]\right.\right. \tag{4}
\end{equation*}
$$

Thus, if we know the Bode plot of basic functions, we can sketch the Bode diagram of $G(s)$.

Bode plots - review
Given a transfer function

$$
\begin{equation*}
G(s)=k \frac{\prod_{i=1}^{n}\left(s+z_{i}\right)}{\prod_{i=1}^{m}\left(s+p_{i}\right)} \tag{5}
\end{equation*}
$$

The phase is

$$
\begin{gather*}
\angle\left[G(j \omega) \left\lvert\,=\phi=\tan ^{-1}\left[\frac{\Im[G(j \omega)]}{\Re[G(j \omega)]}\right]\right.\right. \tag{6}\\
\phi=\angle(k)+\sum_{i=1}^{n}\left[\angle\left(j \omega+z_{i}\right)\right]+\sum_{i=1}^{m}\left[\angle \frac{1}{j \omega+p_{i}}\right] \tag{7}
\end{gather*}
$$

Thus, if we know the Bode plot of basic functions, we can sketch the Bode diagram of $G(s)$.

Bode plot building blocks - review

1 - Constant gain

\rightarrow Gain: $|k|$ or $20 \log (|k|)$
\rightarrow Phase: $\phi=0 \forall \omega$ if $k>0,-180^{\circ}$ otherwise
2 - Pole at the origin
\rightarrow Gain: $-20 \log (\omega)$
\rightarrow Phase: $-90^{\circ} \forall \omega$

Bode plot building blocks - review

3-Zero at the origin

\rightarrow Gain: $20 \log (\omega)$
\rightarrow Phase: $90^{\circ} \forall \omega$

Note that this is the negative of a pole at the origin:

Bode plot building blocks - review

4 - Real pole: $G(s)=\frac{1}{\frac{s}{\omega_{0}+1}}, \omega_{0} \in \Re^{*}$

	$\omega \ll \omega_{0}$	$\omega=\omega_{0}$	$\omega=\omega_{0}$
Gain	0	-3 dB	$-20 \log \sqrt{\frac{\omega}{\omega_{0}}}$
Phase	0	-45°	-90°

Bode plot building blocks - review

5 - Real zero: $G(s)=\frac{s}{\omega_{0}}+1, \omega_{0} \in \Re^{*}$

	$\omega \ll \omega_{0}$	$\omega=\omega_{0}$	$\omega=\omega_{0}$
Gain	0	+3 dB	$20 \log \sqrt{\frac{\omega}{\omega_{0}}}$
Phase	0	45°	90°

The real zero is the negative of a real pole on the Bode plot

Exercise 100

$$
20 \log (0,1)=-20
$$

Draw the approximate Bode plot of the transfer function

Exercise 100 - continued

$0.1\left(\frac{S}{(\theta}+l\right)$
Draw the approximate Bode plot of the transfer function $\sigma(s)=$

$$
G(s)=\frac{(s+10)}{(s+1)^{2}(s+100)}
$$

Exercise 100 - continued

$$
\operatorname{bade}(H)
$$

Result using Matlab

Bode plot building blocks
6 - Complex conjugate poles $G(s)=\frac{\omega_{0}^{2}}{s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}} \quad=$
The equation can be rearranged as

$$
\begin{align*}
& G(s)=\frac{1}{\left(\frac{s}{\omega_{0}}\right)^{2}+2 \zeta\left(\frac{s}{\omega_{0}}\right)+1} \rightarrow G(j \omega)=\frac{1}{-\left(\frac{\omega}{\omega_{0}}\right)^{2}+1+j 2 \zeta\left(\frac{\omega}{\omega_{0}}\right)} \tag{8}\\
& G(j \omega)=\frac{1}{-\left(\frac{\omega}{\omega_{0}}\right)^{2}+1+j 2 \zeta\left(\frac{\omega}{\omega_{0}}\right)} \times \frac{-\left(\frac{\omega}{\omega_{0}}\right)^{2}+1-j 2 \zeta\left(\frac{\omega}{\omega_{0}}\right)}{-\left(\frac{\omega}{\omega_{0}}\right)^{2}+1-j 2 \zeta\left(\frac{\omega}{\omega_{0}}\right)} \tag{9}\\
& G(j \omega)=\frac{1-\left(\frac{\omega}{\omega_{0}}\right)^{2}}{\left[1-\left(\frac{\omega}{\omega_{0}}\right)^{2}\right]^{2}+\left[2 \zeta\left(\frac{\omega}{\omega_{0}}\right)\right]^{2}}+j \frac{-2 \zeta\left(\frac{\omega}{\omega_{0}}\right)}{\left[1-\left(\frac{\omega}{\omega_{0}}\right)^{2}\right]^{2}+\left[2 \zeta\left(\frac{\omega}{\omega_{0}}\right)\right]^{2}} \tag{10}
\end{align*}
$$

Bode plot building blocks

$$
G(j \omega)=\frac{1-\left(\frac{\omega}{\omega_{0}}\right)^{2}}{\left[1-\left(\frac{\omega}{\omega_{0}}\right)^{2}\right]^{2}+\left[2 \zeta\left(\frac{\omega}{\omega_{0}}\right)\right]^{2}}+j \frac{-2 \zeta\left(\frac{\omega}{\omega_{0}}\right)}{\left[1-\left(\frac{\omega}{\omega_{0}}\right)^{2}\right]^{2}+\left[2 \zeta\left(\frac{\omega}{\omega_{0}}\right)\right]^{2}}
$$

Case 1: $\omega \ll \omega_{0}$,
\rightarrow Thus: $\omega / \omega_{0} \approx 0$ and $G(j \omega)$ simplifies to

$$
G(j \omega) \approx 1+0 j
$$

\rightarrow The gain is $20 \log \left(\sqrt{1^{2}+0^{0}}\right)=0 \mathrm{~dB}$
\rightarrow The phase is $\phi=\tan ^{-1}\left(\frac{0}{1}\right)=0^{\circ}$

Bode plot building blocks

$$
G(j \omega)=\frac{1-\left(\frac{\omega}{\omega_{0}}\right)^{2}}{\left[1-\left(\frac{\omega}{\omega_{0}}\right)^{2}\right]^{2}+\left[2 \zeta\left(\frac{\omega}{\omega_{0}}\right)\right]^{2}}+j \frac{-2 \zeta\left(\frac{\omega}{\omega_{0}}\right)}{\left[1-\left(\frac{\omega}{\omega_{0}}\right)^{2}\right]^{2}+\left[2 \zeta\left(\frac{\omega}{\omega_{0}}\right)\right]^{2}}
$$

Case 2: $\omega \gg \omega_{0}$
\rightarrow Thus $G(j \omega)$ simplifies to

$$
G(j \omega) \approx-\frac{1}{\left(\frac{\omega}{\omega_{n}}\right)^{2}}-j \frac{2 \zeta}{\left(\frac{\omega}{\omega_{0}}\right)^{3}}
$$

\rightarrow The gain is

$$
\begin{gathered}
G=20 \log \sqrt{\left[-\left(\frac{\omega}{\omega_{n}}\right)^{-2}\right]^{2}+\left[-2 \zeta\left(\frac{\omega}{\omega_{0}}\right)^{-3}\right]^{2}} \approx 20 \log \left(\frac{\omega}{\omega_{0}}\right)^{-2} \\
G=-40 \log \left(\frac{\omega}{\omega_{0}}\right)
\end{gathered}
$$

Bode plot building blocks

Still when $\omega \gg \omega_{0}$, let us look at the phase:

$$
\begin{gathered}
G(j \omega) \approx-\frac{1}{\left(\frac{\omega}{\omega_{0}}\right)^{2}}-j \frac{2 \zeta}{\left(\frac{\omega}{\omega_{0}}\right)^{3}} \\
\phi=\tan ^{-1}\left[\frac{-2 \zeta\left(\frac{\omega}{\omega_{0}}\right)^{-3}}{-\left(\frac{\omega}{\omega_{0}}\right)^{-2}}\right]=\tan ^{-1} \underbrace{\left[2 \zeta \frac{\omega_{n}}{\omega}\right]}_{\rightarrow 0}=-180^{\circ}
\end{gathered}
$$

Why -180° instead of 0° ?

Bode plot building blocks

$$
G(j \omega)=\frac{1-\left(\frac{\omega}{\omega_{0}}\right)^{2}}{\left[1-\left(\frac{\omega}{\omega_{0}}\right)^{2}\right]^{2}+\left[2 \zeta\left(\frac{\omega}{\omega_{0}}\right)\right]^{2}}+j \frac{-2 \zeta\left(\frac{\omega}{\omega_{0}}\right)}{\left[1-\left(\frac{\omega}{\omega_{0}}\right)^{2}\right]^{2}+\left[2 \zeta\left(\frac{\omega}{\omega_{0}}\right)\right]^{2}}
$$

Case 3: $\omega=\omega_{0}$
\rightarrow Thus $G(j \omega)$ simplifies to

$$
G(j \omega)=0-j\left(\frac{1}{2 \zeta}\right)
$$

$$
\begin{aligned}
& G=20 \log \sqrt{\left(\frac{-1}{2 \zeta}\right)^{2}}=20 \log (2 \zeta)^{-1}=-20 \log (2 \zeta) \\
& =0 \mathrm{~dB} \\
& \text { re is a peak at } \omega=\omega_{0}
\end{aligned}
$$

$\zeta=0.5, G=0 \mathrm{~dB}$
$\zeta<0.5$, there is a peak at $\omega=\omega_{0}$
$\zeta>0.5$, there is a negative gain at $\omega=\omega_{0}$
$\zeta=0, \mathrm{G}\left(\omega=\omega_{0}\right) \rightarrow \infty$

Bode plot building blocks

When $\omega=\omega_{0}$, the phase is

$$
\begin{gathered}
G(j \omega)=0-j\left(\frac{1}{2 \zeta}\right) \\
\phi=\tan ^{-1}\left(-\frac{\frac{1}{2 \zeta}}{c}\right)_{c \rightarrow 0}=-90^{\circ}
\end{gathered}
$$

In summary

	$\omega \ll \omega_{n}$	$\omega \gg \omega_{n}$	$\omega=\omega_{n}$
Gain	0	$-40 \mathrm{~dB} /$ decade	$-20 \log (2 \zeta)<$
Phase	0°	-180°	-90°
this analogous to having two equal real poles.			

Notice that this analogous to having two equal real poles.

Bode plot building blocks

Summary - Bode plots for complex poles

	$\omega \ll \omega_{n}$	$\omega \gg \omega_{n}$	$\omega=\omega_{n}$
Gain	0	$-40 \mathrm{~dB} /$ decade	$-20 \log (2 \zeta)$
Phase	0°	-180°	-90°

Influence of the damping ratio

Resonance frequency

The frequency at which the gain reaches its maximum value is called the resonance frequency.

The resonance frequency satisfies $\omega=\omega_{r}$

$$
\begin{gather*}
\frac{\partial}{\partial \omega} \sqrt{\left(\frac{1-\left(\frac{\omega}{\omega_{0}}\right)^{2}}{\left[1-\left(\frac{\omega}{\omega_{0}}\right)^{2}\right]^{2}+\left[2 \zeta\left(\frac{\omega}{\omega_{0}}\right)\right]^{2}}\right)^{2}+\left(\frac{-2 \zeta\left(\frac{\omega}{\omega_{0}}\right)}{\left[1-\left(\frac{\omega}{\omega_{0}}\right)^{2}\right]^{2}+\left[2 \zeta\left(\frac{\omega}{\omega_{0}}\right)\right]^{2}}\right)^{2}}=0 \\
\omega_{r}=\omega_{0} \sqrt{1-2 \zeta^{2}}, \text { for } \zeta<\frac{\sqrt{2}}{2} \tag{11}
\end{gather*}
$$

Thus, the maximum value M_{ω} of $|G(j \omega)|$ is

$$
\begin{equation*}
M_{\omega}=\frac{1}{2 \zeta \sqrt{1-\zeta^{2}}}, \text { for } \zeta<\frac{\sqrt{2}}{2} \tag{12}
\end{equation*}
$$

Exercise 101

The frequency response of a dynamic system has many practical applications and is often used in order to estimate the system parameters. Knowing that a system transfer function is

$$
G(s)=k \frac{s}{(s+a)\left(s^{2}+20 s+100\right)}
$$

And its frequency response is shown in the Bode plot, determine k and a.

Exercise 101 - continued

$$
G(x)=K \frac{s}{(x+a)\left(s^{2}+20 s+200\right)}
$$

$$
\varphi=\tan ^{-1}\left(\frac{I m}{R e}\right)
$$

$$
z_{0}^{e^{r o j} j_{0 i g}^{y^{2 n}}} p^{\theta^{l e^{c o s}}} \downarrow
$$

$$
\varphi=+g_{\theta^{\circ}}-\operatorname{atan}\left(\frac{w}{a}\right)-2 \operatorname{atan}\left(\frac{w}{10}\right)
$$

$$
-9 \theta^{0}+2 \operatorname{atan}\left(\frac{3}{10}\right)=-\operatorname{atan}\left(\frac{3}{a}\right)
$$

solving for ""a $\rightarrow a=2$

$$
|G(\sigma \omega)|=20 \log (k)+20 \log (w)-20 \log \sqrt{2^{2}+w^{2}}-2 \times 20 \log \sqrt{1 \theta^{2}+w^{2}}
$$

$$
0=20 \log (k)+20 \log (0.5)-20 \log \left(2^{2}+0.5^{2}\right)-20 \log \left(10^{2}+0.5^{2}\right)
$$

$$
K \simeq 4_{00}
$$

Exercise 102

A low-pass filter is a filter that passes signals with a frequency lower than a certain cut-off frequency and attenuates signals with frequencies higher than the cut-off frequency. A hypothetical filter has the transfer function

$$
G(s)=\quad \frac{4}{\left(s^{2}+0.4 s+4\right)}
$$

Sketch its frequency response.

Exercise 102 - continued

$$
G(s)=\quad \frac{4}{\left(s^{2}+0.4 s+4\right)}
$$

$$
G(s)=\frac{1}{\left(\frac{s}{2}\right)^{2}+0 \cdot 2\left(\frac{s}{2}\right)+1}
$$

$$
w_{\theta}=2
$$

$$
\begin{aligned}
& 23=0.2 \\
& y=0.1
\end{aligned}
$$

when $w=w_{0}$

$$
\begin{aligned}
& G G \omega)=-20 \log (25) \\
& G(0.1)=-20 \log (0.1) \\
& G(0.1)=+13.9 \mathrm{~dB}
\end{aligned}
$$

Exercise 102 - continued

$\omega_{0}=1 \mathrm{rad} / \mathrm{s}$ and $\omega_{0}=2 \mathrm{rad} / \mathrm{s}$ (complex poles).

$$
G(s)=\frac{1}{\left(\frac{s}{2}\right)^{2}+0.2\left(\frac{s}{2}\right)+1}
$$

Exercise 103

The experimental oblique wing aircraft has a wing that pivots. Its control system loop transfer function is

Sketch its frequency response.

Exercise 103 - continued

$$
\begin{aligned}
& G(s)=\frac{4(0.5 s+1)}{s(2 s+1)\left[\left(\frac{s}{8}\right)^{2}+\frac{s}{20}+1\right]} \\
& G(s)=\frac{4(0.5)(s+2)}{s(2)(s+0.5)\left[\left(\frac{s}{8}\right)^{2}+\frac{s}{2 \theta}+1\right]} \rightarrow G(s)=\frac{4(0.5) 2\left(\frac{s}{2}+1\right)}{\delta 2(0.5)\left(\frac{s}{0.5}+1\right)\left[\left(\frac{s}{8}\right)^{2}+\frac{s}{20}+1\right]} \\
& 6(s)=4\left(\frac{s}{2}+1\right) \\
& \overline{5\left(\frac{5}{0.5}+1\right)\left[\left(\frac{5}{8}\right)^{2}+\frac{5}{20}+1\right]} \\
& \text { cut off freguncies: } w_{1}=0.5 \mathrm{rad} / \mathrm{s}(\text { redpolie) } \\
& \omega_{2}=2 \mathrm{rad} / \mathrm{s} \text { (red zero) } \\
& \omega_{3}=8 \mathrm{rad} / \mathrm{s} \\
& \text { (complex pale) } \\
& \rightarrow \text { pole at the } \\
& \text { origin }
\end{aligned}
$$

Exercise 103-continued

$$
20 \log (4)=12 d B
$$

Exercise 104 - Matlab problem

Consider the closed-loop transfer function

$$
R(s)=\frac{30}{s^{2}+s+30}
$$

Develop a Matlab code to obtain the Bode plot and verity that the resonant frequency is $5.44 \mathrm{rad} / \mathrm{s}$ and that the peak magnitude is 14.8 dB .

Compare the results of you code with the results of "Bode(R)" function.

Next class...

- Stability in the frequency domain

