MECE 3350U Control Systems

Lecture 20 Stability Margins

臣

By the end of today's lecture you should be able to

- Calculate the gain and phase margin of a system
- Obtain the gain and phase margin from a Bode plot
- Quantify the stability of an open-loop transfer function

(ロ) (部) (目) (目) (目) (目)

Applications

We wish to develop a closed-loop controller for a system whose dynamics is unknown. The frequency response of the open-loop system has been obtained experimentally using an oscilloscope.

What does it tell us about its closed-loop stability?

Applications

The controller gain k has been specified to the process shown.

If b changes during operation, how can we ensure that the system remains stable?

(ロ) (部) (目) (目) (目) (目)

Bode vs Nyquist plots

The closed loop system

might be stable for only a range of values of k.

The proximity of the $L(j\omega)$ locus to -1 + j0 is a measure of the relative stability of the system.

물 에 제품 에

æ

Bode vs Nyquist plot

Consider the open-loop transfer function

As k is increased, the Nyquist plot approaches -1 + 0j and eventually encircles the 1 point.

The point -1 + 0j can also be expressed in polar form as $1 \angle -180^{\circ}$

Bode vs Nyquist plot

Gain margin: The increase in the loop gain when $\phi = -180^{\circ}$ that results in $|L(j\omega)| = 1$ or 0 dB.

Phase margin: The amount of phase shift at the crossover frequency that results in $\angle L(j\omega) = -180^{\circ}$.

Gain and phase margins

イロト イヨト イヨト イヨト

Lecture 20

æ

Gain and phase margins

True or false?

The following open-loop transfer function is closed-loop stable for any k > 0.

<ロト < 聞 > < 臣 > < 臣 > 二 臣

True or false?

The following open-loop transfer function is closed-loop stable for any k > 0.

Phase margin

As an example, consider the open-loop second-order system

$$G(s) = \frac{\omega_n^2}{s(s+2\zeta\omega_n)} \to \frac{\omega_n^2}{j\omega(j\omega+2\zeta\omega_n)}$$
(1)

Step 1 - Find the crossover frequency (0 dB)

At the crossover frequency $\omega = \omega_c$, the magnitude is 1. Find ω_c that gives

$$\frac{\omega_n^2}{\omega_c\sqrt{\omega_c^2+4\zeta^2\omega_n^2}}=1.$$

Step 2 - Find the phase of $G(j\omega)$ at ω_c for ω_c found in Step 1, i.e. $\angle G(j\omega_c)$

$$\phi = -90^{\circ} - an\left(rac{\omega_c}{2\zeta\omega_n}
ight)$$

Step 3 - The margin phase is $180 - |\phi|$

(日)

Gain margin

Consider the same open-loop second-order system

$$G(s) = rac{\omega_n^2}{s(s+2\zeta\omega_n)} o rac{\omega_n^2}{j\omega(j\omega+2\zeta\omega_n)}$$

Step 1 - Find the frequency ω_{f} where $\angle |G(j\omega)| = -180^{\circ}$

$$G(j\omega) = \frac{\omega_n^2}{j\omega(j\omega + 2\zeta\omega_n)} = \frac{\omega_n^2}{-\omega_f^2 + j2\zeta\omega_n\omega_f} \times \frac{-\omega_f^2 - j2\zeta\omega_n\omega_f}{-\omega_f^2 - j2\zeta\omega_n\omega_f}$$
$$G(j\omega) = -\frac{\omega_n^2\omega_f^2}{\omega_f^4 + 4\zeta^2\omega_n^2\omega_f^2} - j\frac{2\zeta\omega_n^3\omega_f}{\omega_f^4 + 4\zeta^2\omega_n^2\omega_f^2}$$

At ω_f , $\Im[G(j\omega_f)] = 0$ (imaginary part is zero)

$$-\frac{2\zeta\omega_n^3\omega_f}{\omega_f^4+4\zeta^2\omega_n^2\omega_f^2}=0$$

 $\omega_f = 0$ Not a valid frequency

$$\omega_f = \infty$$
 What does it mean? $\oint \neq -180^\circ \quad \forall \quad k$

 $\omega_f = \text{constant.}$ Proceed to Step 2

Gain margin

Step 2 - Find the gain of $G(j\omega)$ at $\omega = \omega_c$, i.e., $|G(j\omega_f)|$

$$k_{MG} = \frac{\omega_n^2}{\omega_f \sqrt{\omega_f^2 + 4\zeta^2 \omega_n^2}}$$

Then gain margin in Decibels is

$$MG = -20 \log(G)$$

 \rightarrow *MG* > 0: The current gain can be multiplied by *k*_{*MG*} **dB** before the system becomes marginally stable (or *MG* decibels can be added before instability);

 \rightarrow *MG* < 0 The gain can be divided by k_{MG} dB before the system becomes marginally stable (or *MG* decibels can be subtracted before instability).

 \rightarrow *MG* = 0 The system is marginally stable.

Exercise 117

A unit feedback control system has a loop transfer function

$$L(s) = \frac{k}{s(s+2)(s+10)}$$

For k = 50, determine the cross over frequency, the gain margin, and the phase margin.

(日)

Exercise 117 - continued

$$L(s) = \frac{k}{s(s+2)(s+10)} - r \frac{50}{\sqrt{3}} \frac{50}{\sqrt{3}} \frac{1}{\sqrt{3}} \frac{50}{\sqrt{3}} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}$$

Exercise 117 - continued

$$L(s) = \frac{k}{s(s+2)(s+10)} \xrightarrow{-r} \frac{50}{\sqrt{v}(\sqrt{v}+2)(\sqrt{v}+0)}$$

$$L(yw) = \frac{50}{\sqrt{v}(\sqrt{v}+2\sqrt{v}+20w)} \xrightarrow{-r} L(yw) = \frac{50}{(-w^3+20w)\sqrt{r}} \times \frac{12w - (-w^3+20w)\sqrt{r}}{(12w) - (-w^3+20w)\sqrt{r}}$$

$$L(yw) = \frac{50(12w)}{(12w)^2 - [(-w^3+20w)\sqrt{r}]^2} \xrightarrow{-v} \frac{-w^3+20w}{(12w)^2 - [(-w^3+20w)\sqrt{r}]^2}$$

$$Fe$$
Gain Margin
$$\phi = -(80^\circ = 7 \text{ Im} = 0)$$

$$\frac{-(-w^3+20)w}{(12w)^2 - [(-w^3+20w)\sqrt{r}]^2} = 0$$

Exercise 118

Try this on gover own

A unit feedback control system has a loop transfer function

$$L(s) = \frac{k}{(s+1)^2}$$

Determine the gain k so that the phase margin is 60°

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Lecture 20

Exercise 118 - continued

K=? for P.M. = 60°

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$L(s) = \frac{k}{(s+1)^2} - \frac{k}{(s+1)^{2-r}} \int_{(s+1)^{2-r}}^{k} \frac{k}{(s+1)^{2-r}} \int_{(s+1)^{2-r}}^{2} \frac{k}{(s$$

Exercise 118 - continued

$$L(s) = \frac{k}{(s+1)^2}$$

See preview slide.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

MECE 3350 - C. Rossa

イロト イポト イヨト イヨト

Lecture 20

æ

Exercise 119

A system has a loop transfer function

$$T(s) = 10.5 \frac{1 + s/5}{s(\frac{1}{s} + s/2)(1 + s/10)}$$

Show that the crossover frequency is 5 rad/s and that the phase margin is 40°

Exercise 119 - continued

$$T(s) = 10.5 \frac{1 + s/5}{s(\frac{1}{5} + s/2)(1 + s/10)}$$

$$\left| \frac{10.5 (1 + \frac{1}{5})}{(\frac{1}{5})(1 + \frac{1}{5})(1 + \frac{1}{5})} \right| = 1 \qquad \frac{10.5 \sqrt{1 + \frac{1}{25}}}{\sqrt{1 + \frac{1}{5}}} = 1$$

$$\left(\underline{10.5}\right)^{2}\left(\underline{1}+\underline{w}^{2}\underline{5}\right)=w^{2}\left(\underline{1}+\underline{w}^{2}\underline{5}\right)\left(\underline{1}+\underline{w}^{2}\underline{5}\right)\left(\underline{1}+\underline{w}^{2}\underline{5}\right)$$

MECE 3350 - C. Rossa

Lecture 20

▲□▶▲□▶▲□▶▲□▶ □ のへで

Exercise 119 - continued

$$T(s) = 10.5 \frac{1 + s/5}{s(\frac{4}{5} + s/2)(1 + s/10)}$$

$$\psi = atan\left(\frac{w/5}{1}\right) - 90^{6} - atan\left(\frac{w/2}{1}\right) - atan\left(\frac{w/10}{1}\right)$$

$$w = 5 \text{ rad/s}$$
solve for f
$$\int = -(39^{6}) \quad (at \quad 0 \in B)$$

$$P.M = (80 - |-139^{6}|)$$

$$P.M = 40 \in B$$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の Q @ 24/30

Lecture 20

Exercise 120 - continued

Consider a unit feedback system with the loop transfer function

$$L(s) = \frac{k}{s(s+1)(s+4)}$$

(a) For k = 5, show that the gain margin is 12 dB
(b) If we wish to achieve a gain margin of 20 dB, determine the value of k

Exercise 120 - continued

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Exercise 120 - continued

Bode diagram for k = 2.

Lecture 20

æ

御 と く ヨ と く ヨ と

Exercise 121 - Using Matlab

Consider a unit feedback system with a PI controller such that the loop transfer function is

$$L(s) = \left(k_p + \frac{k_i}{s}\right) \left(\frac{1}{s(s^2 + 3s + 3.5)}\right)$$

with

$$\frac{k_i}{k_p} = 0.2$$

Using Matlab, determine the gain k_p that provides the maximum phase margin. Specify the maximum margin.

(日)

Next class...

• Space state models

◆□ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで