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On the Sensitivity of Bevelled and Conical Coaxial
Needle Probes for Dielectric Spectroscopy
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Abstract—Dielectric spectroscopy measures the permittivity of
a material in a wide frequency band for analysis and charac-
terisation with many applications in biomedical engineering. It
is typically performed by measuring the reflection coefficient of
the material under test using an open flat-ended coaxial probe.
However, probes with a flat end cannot cut through biological
tissues and thus, can only be deployed for ex-vivo measurements.
Bevelled and conical-ended coaxial probes can overcome this
limitation as they can be integrated into existing surgical tools for
in-vivo measurements. The geometry of the probe strongly affects
the measurement accuracy and this effect must be modelled
precisely before deployment. Although there has been significant
research using flat-ended probes, there is very limited research
investigating other probe geometries. In this paper, a closed-
form model of a bevelled and a conical end coaxial probe is
presented for the first time. The model is based on the analytical
solution of aperture admittance. The accuracy of the model is
validated using both simulation and experimental results with a
relative error of less than 1% for a wide range of permittivity
values and frequencies. Using the obtained model, the sensitivity
of conical and bevelled probes is analysed and compared. The
results indicate that bevelled probes have a higher sensitivity
than conical probes for tissue measurement and thus are the
preferable probe geometry for in-vivo deployment.

Index Terms—dielectric spectroscopy, bevelled coaxial probe,
conical coaxial probe, permittivity measurement, in-vivo mea-
surement, model optimization, open-ended coaxial probe, sensi-
tivity, tissue measurement

I. INTRODUCTION

THE permittivity of biological tissue governs the inter-
action of electromagnetic fields with organizations at

the cellular, molecular, and ionic levels, and is a strong
biomarker for tissue identification. Dielectric spectroscopy is
a technique used to measure the dielectric properties of a
medium, including its permittivity, as a function of frequency.
Permittivity tissue characterization has been done in radio fre-
quency (RF), microwave, and more recently, in the millimetre-
wave frequency band [1]–[6]. An important application of
permittivity characterization is cancer detection. In fact, it is
possible to differentiate malignant from benign tissue based
on the tissue’s permittivity in the range of 10 Hz to 20 GHz
[3], [7]–[9].
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The most convenient method for determining the permit-
tivity of a biological tissue is to subject it to an electro-
magnetic field and quantify its reflection coefficient, i.e., a
parameter that describes how much of the electromagnetic
field is reflected by the tissue [10]. Electromagnetic energy is
applied to a material under test (MUT) using a transmission
line. The injected energy is radiated, absorbed, or reflected.
The reflection coefficient is the ratio of reflected energy to
the transmitted energy through the transmission line at the
contact plane of the MUT. The reflection coefficient depends
on the permittivity of the material, and it can be measured by a
vector network analyzer (VNA). Amongst the various type of
transmission lines such as rectangular or circular waveguides,
coaxial lines have the advantage of widening the range of
frequencies at which measurements can be taken [11].

Different methods have been proposed to extract the per-
mittivity values from the reflection coefficient. For example,
a lumped equivalent circuit model of the MUT can be used,
but a single set of model parameters is generally not able
to describe the measured reflection coefficient across the
entire frequency band that the probe covers [12]. Analytical
solutions for the aperture admittance of an open-ended coaxial
cable that radiates into an unbounded material have also been
proposed. The measured reflection coefficient is fed to an
iterative model to extract the permittivity values [11]. These
methods are the basis of many commercial open-ended coaxial
probes designed for measuring the permittivity of a variety
of materials. Commercial probes typically take the form of
coaxial cables with a flat end. Such a simple geometry, and
the analogy that can be established with a transmission line
opening to an infinite ground plane, is easier to model and
analyse than more complex geometries [13]–[15].

A critical limitation of using flat open-ended coaxial probes
is that they cannot be used for biological tissue character-
ization. Flat open-ended coaxial probes cannot cut through
tissue, and therefore they cannot be easily integrated into
surgical tools for in-vivo deployment, such as in biopsy needles
and drainage catheters. All measurements performed with flat-
ended probes must be conducted using ex-vivo excised tissue.
In-vivo measurements may be more useful, especially if real-
time feedback can be provided to guide biopsy procedures
and focal treatment such as ablation [16]. A solution to this
problem is to consider probes having a bevelled or conical
coaxial end that can cut through tissue as the probe is inserted
and steered towards a point of interest. This type of probe can
then be integrated into diagnostic or treatment tools for in-vivo
feedback about the characteristics of the tissue in contact with
the probe’s tip. As a consequence of its sharp geometry, an
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important benefit of using bevelled or conical-shaped probes
is the decreased chance of trapping air between the probe’s
tip and the tissue.

Although many different models have been proposed to
describe the aperture admittance of flat open-ended coaxial
probes, there is a critical gap in the literature with regard
to bevelled and conical open-ended coaxial probes. In fact,
the probe’s own geometry strongly affects the measured field
reflected from the tissue. Therefore the effect of the probe’s
diameter and the bevel or conical cut angle on the probe’s
accuracy and sensitivity must be thoroughly investigated.
Accuracy defines how well the probe can extract the true
relative permittivity properties of the tissue, while sensitivity
corresponds to its ability to detect small variations in the
relative permittivity characteristics of the tissue [17]. More
specifically, the sensitivity can be defined as the relative
change in the measured reflection coefficient with respect to
the relative change in permittivity. Sensitivity thus defines
accuracy [18].

The development of a new probe for in-vivo permittivity
tissue characterization requires: (1) An accurate model of
the probe’s admittance to extract the tissue’s permittivity
properties from the measured reflection coefficient; and (2) that
the probe’s sensitivity be quantified for different geometries to
guide the choice of the optimal probe type.

This paper presents a broadband model of aperture ad-
mittance of an open-ended coaxial probe with bevelled and
conical ends. First, in Section II an analytical model of the
aperture admittance is derived for a generic open-ended probe.
A Taylor series expansion is used to simplify the equations
describing the admittance as a function of a series of geometry-
specific coefficients. A procedure for obtaining these model
coefficients is introduced in Section III. This is achieved by
simulating different probe geometries in Ansys HFSS and
using the data to find the model parameters. Experimental val-
idation of the model using two probe geometries is presented
in section IV. In Section V the model is used to quantify
and compare the sensitivity of different probe geometries.
Recommendations for the optimization the probe geometry
and the consistency of the obtained results with previous
work are also discussed. Finally, Section VI summarizes the
main conclusions of this paper. To the best of the author’s
knowledge, such a comprehensive analysis for conical and
bevelled end probes designed for in-vivo measurements has
not been presented before.

II. ADMITTANCE MODEL OF A COAXIAL PROBE

Consider a coaxial probe with inner and outer radii a and
b, respectively, filled with a lossless homogeneous dielectric
having a relative permittivity ϵc. The tip of the probe is
inserted into a tissue having a complex relative permittivity
ϵm = ϵr − j σ

ωϵ0
, where ϵr is the relative permittivity, σ is

the conductivity, ω is the angular frequency, and ϵ0 is the
vacuum permittivity, as shown in Fig. 1(a). The probe can
be terminated with either a flat, bevelled, or conical end. The
cut angle α is the complementary angle between the probe’s
longitudinal axis and the tip’s bevel or conical surface, see
Fig. 1(b) and 1(c), respectively.

(a)

(b) (c)

Fig. 1. (a) Geometry of flat, bevelled and conical open-ended coaxial probe
filled with a dielectric having a relative permittivity ϵc and inner and outer
radii a and b, respectively, immersed into the MUT with complex relative
permittivity ϵm. (b) bevelled and (c) conical coaxial probe geometries with a
cut angle α.

The normalized aperture admittance at the open-ended sur-
face of this coaxial probe in terms of the dominant mode
reflection coefficient (Γ) can be defined as:

Ys =
1− Γ

1 + Γ
(1)

The coaxial line can support transverse electric (TE) and
transverse magnetic (TM) wave propagation modes in addition
to the transverse electromagnetic (TEM) mode. In practice,
the TE and TM modes only have a reactive effect near the
line’s aperture and can be neglected elsewhere. In fact, the
principal TEM can be considered the dominant mode for small
cut angles (α) in the bevelled and conical geometries [19]. This
assumption is correct if the frequency is well below the cut-off
frequency of dominant TE or TM modes [20]. By matching
the radiated fields of the aperture to the TEM of the coaxial
line, the normalized admittance Ys, in terms of the electric and
magnetic field of the aperture (assuming radial symmetry), can
be expressed as [19]:

Ys =
jk2m
2πkc

×∫
Hs

(∫
Me

e−jkmRe

Re
ds′ +

∫
Mi

e−jkmRi

Ri
ds′′

)
ds∫

EsHs ds

(2)

where
kc = ω

√
ϵcϵ0µ0

km = ω
√
ϵmϵ0µ0

2
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and Es and Hs are the surface tangential electric and magnetic
field of the probe aperture respectively, Me is the equivalent
magnetic current source and Mi is the imaginary magnetic
current source. Re and Ri are the distances between the point
where the inner and outer integrals are calculated in (2). Also,
s and s′ are the aperture surface, and s′′ is the surface on
which the imaginary magnetic current flows.

For a flat open-ended probe, that is, α = 0◦ in Fig. 1(a),
both magnetic current sources (Me and Mi) are equal to Es

based on Huygens’s principle and image theory. However,
for bevelled and conical geometries these currents cannot be
determined analytically since the two exponential terms within
the integrals in (2) are concurrently dependent on the probe
geometry and medium characteristics. The effect of the probe’s
geometry on the admittance is therefore not explicitly known.

As suggested in [21], the integrals in (2) can be made
independent of the medium characteristics through a Taylor
series expansion of its exponential terms. To provide a fast
computation of the normalized aperture admittance using the
expansion, (2) can be rewritten as:

Ys =
k2m
2πkc

[
j

(
I0 −

k2m
2

I2 +
k4m
24

I4 − ...

)
−(

kmI1 −
k3m
6

I3 +
k5m
120

I5 − ...

)] (3)

where

In =

∫
Hs

(∫
MeR

n−1
e ds′ +

∫
MiR

n−1
i ds′′

)
ds∫

EsHs ds

. (4)

The terms In in the above equation, henceforward referred
to as the probe’s coefficient, are independent of the medium
characteristics and solely a function of the geometry of the
probe. These coefficients need to be calculated once for
every probe geometry. Even though the analytical calcula-
tion of these coefficients is possible for simple geometries,
an optimization method is required to include the effect of
higher order modes and eliminate the infinite ground plane
assumption [21]. The probe’s coefficients can be identified
by fitting the aperture admittance model (2) to some known
aperture admittance obtained from experimental evaluation or
simulations.

III. CALCULATING THE PROBE’S COEFFICIENTS

In this paper, the probe’s coefficients are identified through
model fitting using simulated data obtained from multiple
materials and frequencies. Simulation is performed in Ansys
HFSS. Subsequently, the model is validated in a different
range of frequencies than that used for model fitting, and also
experimentally in Section IV.

A. Data generation for model fitting

Fig. 2 shows a 3D drawing of a flat coaxial probe in a
MUT in the simulation environment implemented in Ansys.
Three different coaxial probe geometries are simulated i.e.,

MUT

Probe Deebedded
Length

Wave Prot

Fig. 2. Full-wave simulation of a flat open-ended coaxial probe inside the
MUT (green sphere) in Ansys HFSS. Bevelled and coaxial geometries are
also simulated, see Fig. 1(b) and 1(c).

the flat, a bevelled, and a conical shape. The latter two are
simulated using two different cut angles,i.e., α = 60◦ and
α = 70◦. These angles are chosen to match the cut angles
of commercially available surgical and biopsy needles [22],
[23]. The coaxial line dimension is a standard 50-Ω Teflon-
filled cable with an external diameter of 1.15 mm, a dielectric
radius of b = 0.43 mm and an inner conductor radius of a =
0.14 mm. The diameter of MUT is 5 mm, which is much
larger than the sample zone in which the electromagnetic field
penetrates [24]. To convert the simulated reflection coefficient
to the aperture-plane reflection coefficient, the length of the
probe’s inner conductor is de-embedded from the simulation
results.

Simulation is performed at two frequencies, i.e., 1 and 10
GHz. The permittivity values used for model identification are
chosen to be within the range of biological tissues [1]–[5]. The
relative permittivity of the MUT ranges from 1≤ ϵr ≤100
with increments of 5, while its conductivity ranges from 0
S/m≤ σ ≤100 S/m in increments of 5 S/m. This amounts
to 441 unique MUT and 882 simulations in total. Once the
reflection coefficients are obtained, the normalized aperture
admittance can be computed using (1) for every combination
of (ϵr, σ) at each frequency.

B. Model fitting

The objective is to determine the probe’s coefficients In so
as to minimize the relative error between the admittance cal-
culated using the model (Ymodel) and the admittance obtained
through the simulation (Ysim), i.e.,

Error =
1

p

p∑
i=1

∣∣∣Ysim,i − Ymodel(In)i
Ysim,i

∣∣∣ (5)

where p is the number of simulations used. As the values of
admittance vary significantly, the error is evaluated relative to
the magnitude of the admittance.

An initial value for the coefficients can be obtained using the
least square method (LSTSQ), which is built by the GELSD

3
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TABLE I
RELATIVE MODEL FITTING ERROR

Probe type

Method flat
α = 0◦

bevelled
α = 60◦

bevelled
α = 70◦

conical
α = 60◦

conical
α = 70◦

LSTSQ 4.1% 5.0% 7.2% 6.5% 8.9%
ADAM 0.4% 0.9% 0.8% 0.6% 2.7%

TABLE II
PROBE COEFFICIENTS FOR DIFFERENT GEOMETRIES

Probe type

flat
α = 0◦

bevelled
α = 60◦

bevelled
α = 70◦

Conical
α = 60◦

Conical
α = 70◦

I0 7.38× 10−4 1.10× 10−3 1.41× 10−3 1.40× 10−3 1.76× 10−3

I1 −8.74× 10−9 3.81× 10−9 2.60× 10−9 −1.68× 10−7 −4.66× 10−7

I2 −1.30× 10−11 −5.74× 10−11 −7.27× 10−11 −5.38× 10−11 7.14× 10−11

I3 1.08× 10−15 6.48× 10−14 1.10× 10−13 −1.64× 10−13 −2.29× 10−13

I4 3.58× 10−18 −3.59× 10−17 −3.75× 10−17 −1.78× 10−16 −3.71× 10−16

I5 1.30× 10−21 1.80× 10−20 8.02× 10−21 1.18× 10−19 3.14× 10−19

routine from LAPACK package [25]. The LSTSQ method
calculates the vector x such that it minimizes ||b−Ax||2 where:

b =
[
Ysim,1 Ysim,2 · · · Ysim,i

]T
(6)

A =
1

2πkc


k2m,1 jk3m,1 · · · jkn+2

m,1

k2m,2 jk3m,2 · · · jkn+2
m,2

...
...

. . .
...

k2m,p jk3m,p · · · jkn+2
m,p

 , (7)

(8)

and vector x contains the probe’s coefficients:

x =
[
I0 I1 · · · In

]T
(9)

The LSTSQ method is fast and does not need an initial
guess. However, convergence to a global minimum is not
guaranteed. To further reduce the fitting error, the result of
the LSTSQ method is normalized and fed to an optimization
method, in this case, the adaptive moment estimation method
(Adam) is used [26]. This algorithm is a stochastic gradient
descent method based on adaptive estimation of first-order
and second-order moments. The optimization procedure is
summarized in Fig. 3.

C. Optimization Results

Table I shows the residual fitting error after the least square
and Adam algorithms. An error of less than 1% is obtained
with n = 6 for all geometries except for the conical probe
with α = 70◦, for which the error is 2.7%. The calculated
probe’s coefficients are shown in Table II.

Once the probe’s coefficients are calculated, they can be
used to estimate the probe’s admittance at other frequencies.
The same set of simulations is then conducted at 0.5, 5, and
15 GHz. The model is validated by comparing the simulated
admittance with the one obtained from the model using the
parameters listed in Table II. The relative error in the (ϵr, σ)
plane is shown in Fig. 4 for all geometries and newly simulated

TABLE III
TOTAL RELATIVE MODEL ERROR AT 0.5, 5, AND 15 GHZ

Probe Type

Frequency flat
α = 0◦

bevelled
α = 60◦

bevelled
α = 70◦

conical
α = 60◦

conical
α = 70◦

0.5 GHz 1.2% 1.6% 1.6% 1.4% 1.8%
5 GHz 1.4% 1.4% 1.5% 1.3% 2.8%
15 GHz 1.6% 1.9% 4.6% 7.5% 9.2%

frequencies. The total error for each geometry and frequency
is summarized in Table III. As the results show, the model
performs well for frequencies below the highest frequency
used for model fitting, in this case, 10 GHz. The average error
at 0.5 and 5 GHz are less than 1.8% and 2.8% respectively, and
the maximum error is 3.8% and 5% respectively. It can also
be seen that when the frequency is higher than the maximum
frequency used for model fitting, the model may not perform
well and can reach an error of 20% at 15 GHz for example; see
Fig. 4(m)-(o). This is because the higher-order modes present
at high frequencies are not captured when the model is fitted
at a lower frequency. Consequently, it is recommended to use
at least one frequency higher than the operating frequency for
training the model.

Having the probe’s coefficients, the proposed model can
be used to extract the permittivity of the tissue at a given
frequency. This is done by finding the roots of Ys(km) =
Ymeasured in (3), and then choosing the roots that satisfy
the physical constraint, that is ϵm > 1 and σ > 0 S/m.
The measured normalized admittance Ymeasured can also be
calculated using the measured reflection coefficient in (1).

IV. EXPERIMENTAL VALIDATION

To validate the proposed model experimentally, two probes
were fabricated: one having a flat end, and another one with
a bevel angle of 60◦. The probes are connected to a vector
network analyzer to measure the reflection coefficient of a
MUT with known dielectric properties. The frequency ranges
from 0.5 GHz to 10 GHz with intervals of 50 MHz. From the
measured reflection coefficients, the dielectric properties of the
MUT are then estimated using the model presented earlier,
and the results are compared to the known permittivity and
conductivity of the MUT.

The measured reflection coefficients can not be directly
processed as the raw measurements include systematic mea-
surement errors. To remove these errors and map the measured
reflection coefficient to the aperture/material interface, calibra-
tion of the system is needed. In this paper, the same calibration
method discussed in [21] is used. The errors include the
systematic errors of directivity (ed), frequency response (er),
and source match (es). The relation between these errors,
the actual reflection coefficient (Γa) and the the measured
reflection coefficient (Γm) is given by:

Γa = ed +
erΓm

1− esΓm
(10)

4
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Ansys
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(6)

Equ.
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Matrix
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Comptuing Derivatives

Is Error
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Fig. 3. Block diagram of the optimization algorithm. Calculation of the probe’s coefficients using simulation results.

(a) Flat 0°, at 0.5 GHz (b) Bevelled 60°, at 0.5 GHz (c) Bevelled 70°, at 0.5 GHz

%

%

%

(d) Conical 60°, at 0.5 GHz (e) Conical 70°, at 0.5 GHz

(k) Flat 0°, at 15 GHz (l) Bevelled 60°, at 15 GHz (m) Bevelled 70°, at 15 GHz (n) Conical 60°, at 15 GHz (o) Conical 70°, at 15 GHz

(F) Flat 0°, at 5 GHz (g) Bevelled 60°, at 5 GHz (h) Bevelled 70°, at 5 GHz (i) Conical 60°, at 5 GHz (j) Conical 70°, at 5 GHz

Fig. 4. Model relative error in (ϵr ,σ) plane for different geometries at validation frequencies. Error is shown in percentage (%).

The three coefficients in (10) can be determined once
the reflection coefficient of three calibration standards are
known. Air, methanol, and short circuit are the three common
calibration standards used to infer these coefficients for coaxial
probes. The actual reflection coefficient (Γa) of the calibration
standards can be determined using simulation as discussed in
Section III. The complex permittivity values of the calibration
standards are obtained by the Cole-Cole equation:

ϵm = ϵ∞ +
ϵs − ϵ∞

1 + (jωτ)1−α
(11)

where ϵ∞ is the optical permittivity, ϵs is the static permittiv-
ity, τ is the relaxation time, α is the distribution parameter.
The Cole-Cole parameter of the reference liquids can be found
in [27], [28]. For short circuit calibration, the tip of the probe
is submerged in liquid gallium. Having all the actual reflection
coefficients (Γa) and the measured reflection coefficient (Γm)
of the calibration standards, a system of three equations can be

obtained. The calibration errors (i.e., the coefficients in (10))
are the solution to this system of equations.

After calculating the calibration errors, the reflection coef-
ficient can be determined by:

Γa =
Γm − ϵd

ϵs(Γm − ϵd) + ϵr
(12)

Having the actual reflection coefficient of a material, the
relative permittivity is calculated by interactively solving (3).
The actual normalized aperture admittance can be calculated
using (1). For every measurement frequency, the measured
admittance is equated to (3), and the root of the resulting
equation corresponds to km. The complex relative permittivity
(ϵm) then is:

ϵm =
k2m

ω2ϵ0µ0
(13)

Based on physical considerations, the root must lead to a
complex relative permittivity with a real part larger than 1,

5
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(a)

coaxial
needle

MUT

coaxial
prob

interface
cable

(b) (d)

(c)

Fig. 5. Reflection coefficient measurement setup and tools. (a) measurement
setup, (b) coaxial probes, (c) perspective and (d) side views of the 60◦ bevelled
probe.

and an imaginary part larger than 0 (ϵr > 1, σ
ωϵ0

> 0). In
this work, two roots satisfy this condition. They have almost
identical magnitudes (less than 1% difference in ϵm) but with
opposite sign.

The permittivity of the water at room temperature (25 ◦C)
is calculated using the above procedure using the flat and
the 60◦ bevelled probes. Fig 5 shows the measurement setup.
The measured and calibrated (actual) reflection coefficients are
illustrated in Fig. 6. Fig. 7, shows good consistency between
the Cole-Cole model of water and the measured values. The
fluctuation in the results, especially in higher frequencies,
mostly resulted from calibration errors. An interpolation tech-
nique could mitigate this error.

V. SENSITIVITY ANALYSIS

In addition to extracting permittivity values from reflection
measurements, a significant advantage of having a closed-
form solution for aperture admittance is that it allows one to
quantify the sensitivity of the probe with different geometries.
The sensitivity of a coaxial probe can be defined as the relative
change in measured reflection coefficient (Γ) with respect to
a relative change in relative permittivity (ϵr). Measurements
from a probe with low sensitivity will be prone to error.
Therefore, the proper probe geometry with an acceptable
sensitivity range must be chosen for a specific material. The
sensitivity of a coaxial probe also depends on other variables,
such as the frequency and temperature, but their effect is of
limited importance and is not considered here [29].

The sensitivity of a coaxial probe with respect to relative
permittivity can be defined as follows [29]:

SΓ
ϵm =

∣∣∣∣ϵmΓ ∂Γ

∂ϵm

∣∣∣∣ . (14)

(a)

(b)

Fig. 6. Measured reflection coefficient of water from 0.5 to 10 GHz at 25◦C
before and after calibration using a flat (a) and a 60◦ bevelled probe (b).

Fig. 7. Comparison of relative permittivity measurement of water at 25◦C
using both flat and bevelled 60◦. Cole-Cole model for water is also included.

using the chain rule, the sensitivity can be expressed as the
partial derivative of the aperture admittance:

SΓ
ϵm =

∣∣∣∣ϵmΓ ∂Γ

∂Ym

∂Ym

∂ϵm

∣∣∣∣ (15)

6
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(a) Flat 0° (b) Bevelled 60° (c) Bevelled 70° (d) Conical 60° (e) Conical 70°

Fig. 8. Sensitivity of the flat, bevelled, and conical probe with a=0.14 mm, b=0.43 mm at 5 GHz in logarithmic scale. Peaks of sensitivity for (a)-(e) are
located at (2.2, 30.6), (1, 20.4), (1, 15.8), (5.1, 17) and (8, 14.3), respectively.

(a)

(b)

Fig. 9. Sensitivity of flat, bevelled and conical probe with a = 0.14 mm and
b = 0.43 mm at 5 GHz. (a) σ = 0 S/m and (b) σ = 5 S/m.

replacing the derivative of (1) in (15):

SΓ
ϵm =

∣∣∣∣ϵm 1 + Y

1− Y

−2

(1 + Y )2
∂Y

∂ϵm

∣∣∣∣ (16)

simplifying the equation above results in:

SΓ
ϵm =

∣∣∣∣ 2ϵm
(1− Y 2)

∂Y

∂ϵm

∣∣∣∣ (17)

again using the chain rule, one may define the sensitivity as
a functional derivative of aperture admittance with respect to
km as:

SΓ
ϵm =

∣∣∣∣ 2ϵm
(1− Y 2)

∂Y

∂km

∂km
∂ϵm

∣∣∣∣ . (18)

Replacing ∂km/∂ϵm in (18) yields:

SΓ
ϵm =

∣∣∣∣ 2ϵm
(1− Y 2)

∂Y

∂km

ω
√
µ0ϵ0

2
√
ϵm

∣∣∣∣ (19)

and by further replacing the derivative of (3) with respect to
km into (19), one obtains:

SΓ
ϵm =

∣∣∣∣∣∣ ω
√
µ0ϵ0ϵm

(1− 1
4π2k2

c

∑5
n=0

(−1)n+1

(n!)2 kn+2
m I2n

∣∣∣∣∣∣∣∣∣∣∣ 1

2πkc

5∑
n=0

jn+1

n!
(n+ 2)kn+1

m In

∣∣∣∣∣
. (20)

Finally, simplifying the equation above gives the sensitivity
as:

SΓ
ϵm =

∣∣∣∣∣∣2πkc
∑5

n=0
jn+1

n! (n+ 2)(ω
√
µ0ϵ0ϵm)n+2In

4π2k2c +
∑5

n=0
(−1)n

(n!)2 (ω2µ0ϵ0ϵm)n+2I2n

∣∣∣∣∣∣ (21)

Close scrutiny of (21) reveals that the sensitivity is a func-
tion of frequency, permittivity, and the probe’s coefficients.
Fig. 8 shows the sensitivity of each probe geometry in the
(ϵr, σ) plane at a frequency of 5 GHz. The sensitivity is
expressed in logarithmic scale, that is, log10(S

Γ
ϵ ). As the

figures illustrate, for a given relative permittivity ϵr, the sen-
sitivity varies dramatically over the conductivity σ. However,
for a fixed conductivity σ, changes in the medium relative
permittivity ϵr have a smaller effect on the observed sensitivity.
The conical probe with α = 70◦ has the largest variation in
sensitivity with a peak around σ = 15, and then drops sharply
for higher conductivity values. The higher the cut angle α, the
greater the regions in the graphs where the sensitivity is below
zero (blue areas).

Fig. 9(a) and (b) compare the sensitivity of the analyzed
geometries for two fixed values of conductivity, i.e., σ = 0
S/m and 10 S/m, respectively, at 5 GHz. These figures indicate
that the flat probe (α = 0) has a more consistent sensitivity
over different values of ϵr than other geometries. Considering
the sharp geometries, the conical probe with α = 70◦ has
better sensitivity for low values of ϵr and σ, while the bevelled
probe with α = 60◦ has higher sensitivity for high relative
permittivity values. This suggests that bevelled probes have
advantages over the conical probe in terms of sensitivity and
resolution for tissue measurement. This is because biological
tissues have high permittivity due to the high content of water.
Since the sensitivity decreases with the cut angle α in high
permittivity, there is a trade-off between probe sharpness and
sensitivity for tissue measurement.

An implication of the sensitivity distribution over the (ϵr, σ)
plane is how coaxial probes map these ϵr and σ values
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(a) flat 0° (b) bevel 60° (c) bevel 70°

Fig. 10. Mapping of relative permittivity and conductivity (ϵr ,σ) plane into reflection coefficient (Γ) plane by (a) flat, (b) bevelled 60◦ and (c) bevelled 70◦

coaxial probe at 10 GHz.

into the reflection coefficient plane, as shown in Fig. 10.
The reflection coefficient plane represents the complex values
(phase and magnitude) of the reflection coefficients (Γ) in
polar coordinates. These are the reflection coefficients of flat
and bevelled probes at 10 GHz used for training the model
earlier. It is evident that for the same distanced values of the
relative permittivity (ϵr) and conductivity (σ), the distances in
the mapped reflection coefficient values decreased significantly
for higher values of permittivity. This effect increases with the
probe’s cut angle; a phenomenon that was also observed by
analysis of the model.

These results are consistent with the uncertainty analysis
on flat open-ended coaxial probes conducted by Stuchly et
al. [29]. One can conclude that increasing the cut angle or
frequency, and changing the geometry from bevelled to conical
(while maintaining the same cut angle) has a similar effect
on the sensitivity as increasing the probe diameter. In other
words, all these effects are equivalent to increasing the probe’s
aperture.

VI. CONCLUSION

A sensitivity analysis of two new probe geometries is
performed in this paper using a model that incorporates the
analytical solution of their aperture admittance. The presented
model is accurate and only requires its coefficients to be
calculated once for every probe geometry, via either simulation
or experimental results. Experimental results conducted with
a prototype probe confirmed the accuracy of the model.

The objective of sensitivity analysis is to find the geometry
with the lowest uncertainty (i.e., highest sensitivity) within the
permittivity range of biological tissues. As Fig. 8 illustrates,
for all geometries high sensitivity is achieved for a limited
range of permittivity. However, for a frequency between 500
MHz to 10 GHz, the relative permittivity (ϵr) of biological
tissues ranges from 10 to 100, and the conductivity (σ) varies
from 1 S/m to 10 S/m [2]. Within this range, the flat probe
shows the best results with a sensitivity value of 1, while

amongst the sharp geometries, the 60◦ bevelled probe has the
highest sensitivity, see Fig. 9 (b).

Compared to the bevelled probe, the sensitivity analysis
shows that the conical probe is less accurate when distin-
guishing measurements obtained from tissue samples with
similar dielectric values. The reduced sensitivity of the probe
thus makes the classification more prone to measurement
errors, and this phenomenon is amplified as the cutting angle
increases.

The proposed probe geometries can cut through biological
tissue and thus they can be easily integrated into surgical tools
for real-time permittivity measurement of the tissue at the
tooltip. Since other coaxial probes previously studied in the
literature cannot cut through tissue, they are limited to ex-vivo
measurements. in-vivo measurements have several advantages
over ex-vivo measurements. Firstly, excised tissues may have
different permittivity values than in-vivo because of lost water
content, temperature change, etc.. This could easily lead to
incorrect tissue classification. Secondly, real-time permittivity
measurements of internal organs during diagnoses or treat-
ment could increase the physicians’ ability to correctly locate
the target and, in case of focal therapy, result in a more
concentrated treatment reducing damage to adjacent healthy
tissues. The analyzed diameter of the two mentioned probe
geometries makes it possible to integrate them into many
medical monitoring tools and the model has shown satisfactory
accuracy, especially in the range of permittivity values of most
biological tissues.

REFERENCES

[1] C. Gabriel, S. Gabriel, and y. E. Corthout, “The dielectric properties of
biological tissues: I. literature survey,” Physics in medicine & biology,
vol. 41, no. 11, p. 2231, 1996.

[2] S. Gabriel, R. Lau, and C. Gabriel, “The dielectric properties of
biological tissues: Ii. measurements in the frequency range 10 hz to
20 ghz,” Physics in medicine & biology, vol. 41, no. 11, p. 2251, 1996.

[3] S. A. R. Naqvi, M. Manoufali, B. Mohammed, A. T. Mobashsher,
D. Foong, and A. M. Abbosh, “In vivo human skin dielectric properties
characterization and statistical analysis at frequencies from 1 to 30 ghz,”
IEEE Transactions on Instrumentation and Measurement, vol. 70, pp.
1–10, 2020.

8



https://doi.org/10.1109/TIM.2023.3265116

[4] H. Fallahi, J. Sebek, and P. Prakash, “Broadband dielectric properties
of ex vivo bovine liver tissue characterized at ablative temperatures,”
IEEE Transactions on Biomedical Engineering, vol. 68, no. 1, pp. 90–
98, 2020.

[5] A. Fornes-Leal, N. Cardona, M. Frasson, S. Castelló-Palacios,
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coaxial dielectric probe effective penetration depth determination,” IEEE
transactions on microwave theory and techniques, vol. 64, no. 3, pp.
915–923, 2016.

[25] [Online]. Available: http://www.netlib.org/lapack/
[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.
[27] A. P. Gregory and R. Clarke, “Tables of the complex permittivity of

dielectric reference liquids at frequencies up to 5 ghz.” 2012.
[28] A. Nyshadham, C. L. Sibbald, and S. S. Stuchly, “Permittivity mea-

surements using open-ended sensors and reference liquid calibration-
an uncertainty analysis,” IEEE Transactions on Microwave Theory and
Techniques, vol. 40, no. 2, pp. 305–314, 1992.

[29] S. Stuchly, C. Sibbald, and J. Anderson, “A new aperture admittance
model for open-ended waveguides,” IEEE transactions on microwave
theory and techniques, vol. 42, no. 2, pp. 192–198, 1994.

Hossein Asilian Bidgoli is a Ph.D. student in Sys-
tem and Computer Engineering at Carleton Univer-
sity, Ottawa, Canada. He received the B.Sc. degree
from Isfahan University of Technology, Isfahan,
Iran, and the M.Sc. degree from Iran University
of Science and Technology, Tehran, Iran, all in
electrical engineering. His research interests include
biomedical applications of microwave spectroscopy,
electromagnetic parametric modelling and design,
optimization algorithms, deep neural networks, and
microwave circuits design and analysis.

Nicola Schieda is an abdominal radiologist at the
Ottawa hospital and an Associate Professor in Ra-
diology and Surgery at the University of Ottawa.
He is the Director of Abdominal and Pelvic MRI
and Prostate Imaging at the Ottawa hospital. He
is a member of the Scientific Subcommittees for
Genitourinary Imaging at the Radiological Society
of North America, American Roentgen Ray Society
and Society of Abdominal Radiology. He is a panel
member of the American College of Radiology
Appropriateness Criteria for Urological Imaging, a

member of the Society of Abdominal Radiology Disease and is the Chair of
the American College of Radiology Genitourinary Continuing Professional
Improvement program. His current research interests include imaging of
Genito-urinary malignancies and body MRI applications.

Carlos Rossa is an Associate Professor in the
Department of Systems and Computer Engineering
at Carleton University. He received his B.Eng. and
M.Sc. degrees in Mechanical Engineering from the
Ecole Nationale d’Ingénieurs de Metz, Metz, France,
and earned his PhD degree in Mechatronics and
Robotics from the Sorbonne Université (UPMC),
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