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Abstract

The goal of active ankle-foot orthoses (AAFO) is to assist the user in recreating a nominal
gait motion. Previously proposed control systems for AAFOs have been reactive, with
controllers based on the current tracking error. However, the optimal AAFO controller must
ensure adequate trajectory tracking while minimizing the amount of assistance provided to
the user. To this end, a model predictive controller (MPC) can be considered to determine
the optimal control sequence for a given trajectory. The MPC minimizes the control effort,
thereby determining the minimal assistance required for a user to regain a natural gait. This
work outlines the formulation of a non-linear MPC for an AAFO and its combination with
an extended state observer (ESO) for tracking of an AAFO.

In this work, a MPC controller is proposed for optimal control of an AAFO, a linear plant
subject to non-linear actuation constraints. A novel method is expressed to determine the
initial control horizon selection in combination with variable step Newton-based optimization
to enable real-time implementation. The MPC control effort is then combined with the
estimated disturbance from an ESO to accurately track the desired gait.

Simulations and experimental results prove the tracking capabilities of the proposed
method. Compared to a tuned proportional-derivative controller, the simulated controller
reduced the trajectory tracking error by up to 65.1% and 15.3% in an undisturbed and
disturbed environment, respectively. The MPC and ESO combination allows the controller
to identify the optimal control action for accurate trajectory tracking. Concurrently, the
ESO rejects both external and internal disturbances, with superior tracking capabilities in
both undisturbed and heavily disturbed systems, making it the optimal choice for AAFO
control.
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Figure 1: Nominal gait angular and torque trajectories. The torque of the ankle joint is dependent on the
mass of the user. Data from [4].

1. Introduction

An active ankle-foot orthosis (AAFO) is an assistive device used to mechanically com-
pensate for the effects of foot drop. A stroke can result in the onset of foot drop, in which
the dorsiflexion ability of the anterior tibialis is unable to apply 60% of the nominal dor-
siflexion torque [1]. Consequently, additional knee and hip flexions are induced to increase
toe clearance, known as the steppage gait [2, 3]. AAFOs are designed to apply an assistive
torque to the ankle joint to aid dorsiflexion and plantarflexion, reducing the effects of foot
drop. The optimal AAFO aids the user in regaining a nominal gait cycle while applying the
least amount of assistance. Therefore, impedance and model-based controllers have been
proposed to minimize the tracking error between the AAFO and a nominal gait trajectory,
shown in Fig. 1.

Impedance control was the first method implemented in an AAFO, where a series elastic
actuator provided a force proportional to the position tracking error [5]. The controller
separated the gait cycle into three phases. During the heel contact to flat foot phase, the
controller applied impedance to resist plantarflexion; in the stance phase, no impedance is
present; and during the swing phase, variable impedance is provided to ensure toe clearance.
Other implementations of impedance control use a two-phase controller with a magnetorhe-
ological brake [6].

Model-based control, such as adaptive backstepping control [7], and slide mode control
(SMC) [8], have been implemented widely in AAFOs. An extended state observer (ESO)
added to SMC reduced the chattering effect of a large switching gain in the presence of large
unmodelled disturbances and modelling errors [8], negatively affecting trajectory tracking
controllers. Other methods have created adaptive controllers, introducing scaling constants
to match the disturbance to a predefined model [2], along with efforts to reduce dynamic
modelling errors [9]. The human gait is a slow process, with a total step time of 1.1 s as the
average walking speed [4]. The goal of an ideal AAFO control system is to provide the least
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required amount of assistance to achieve a nominal gait, making model predictive control
(MPC) particularly advantageous.

The ankle joint during locomotion is subjected to a large plantarflexion torque distur-
bance, thus, the plant will not always react as the controller expects. MPC is advantageous
for AAFO control in two ways: First, MPC incorporates the magnitude of the control effort
when determining the optimal control action, minimizing the assistance to the user and re-
ducing the opportunity for neuromuscular slaking while still achieving the desired trajectory
[10]. Second, the control method and it’s resulting control values are based on the future
trajectory allowing the controller to prepare for large acceleration instances, which is present
multiple times within the gait cycle.

MPC has not yet been implemented for an AAFO. The closest implementations are
Wang et al.[11], which proposed an end-point MPC controller to control the input to the
hip and knee joints of the LOPES exoskeleton in the swing phase. Zarandi et al. [12]
designed and implemented a non-linear MPC for the hip and knee joint using the active set
method and time varying linearization, with constraints on the maximum torque output. To
target the effects of foot drop, non-linear MPC has been used to control functional electrical
stimulation [3]. The controller minimized the stimulus to the tibialis anterior to achieve a
desired ankle angle in the swing phase. Other works have developed offline MPC controllers,
in which the controller estimates the plant model and calculates two gains to be sent to a
low-level controller operating in real-time [13]. Recently, Jammeli et al. implemented an
explicit MPC combined with a non-linear disturbance observer for an actuated knee-joint
orthosis [14]. The MPC was pre-solved offline to allow real-time implementation of the
constrained cost function. The proposed architecture reduced the trajectory tracking error
and minimized the assistance required from the user, all while requiring a similar torque
magnitude as the compared proportional-integral-derivative controller [14].

This paper proposes a non-linear MPC framework that, when combined with an ESO,
can achieve accurate trajectory tracking of an AAFO at varying levels of disturbance. The
MPC controller relies on a linear plant model and a quadratic cost function containing the
tracking error between the desired and actual plant trajectory, the magnitude of the control
input, and a non-linear penalty function based on the output capability of the implemented
actuator. To ensure quick convergence of the MPC cost function, a novel method to select
an appropriate initial control sequence is proposed based on time-invariant acceleration of
a linear system within a small timestamp. Newton-based optimization quickly minimizes
the objective function at a low computational cost. An ESO is implemented to identify and
reject any disturbance encountered by the plant. The ESO can reject both external and
internal disturbances due to errors in the plant modelling. Simulations and experiments
with an AAFO are conducted. The result is a controller with the ability to reduce the
tracking error compared to a proportional-derivative (PD) controller.

This work presents a novel method of initial control horizon population and optimization,
along with the contribution of a MPC and ESO combination for trajectory tracking of an
AAFO. The paper is structured as follows: Section 2 describes the non-linear MPC formu-
lation and optimization, followed by the simulation of the proposed controller and baseline
PD controller in Section 3. Physical experiments are performed in Section 4, followed by
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Figure 2: a) AAFO prototype powered by a DC motor and gearbox 1O mounted to the shank 2O and driving
elastic element 3O to provide torque to the ankle joint, via the foot-bed 4O. Two quadrature encoders are
mounted to measure the DC motor 5O and ankle 6O rotation, and force sensitive resistors 7O are placed
under the heal and toe to determine the current gait phase. b) The DN-SEA proposed in [15] encompassing
a crank-rocker four-bar mechanism with a discrete non-linear link b.

the discussion of the proposed controller in Section 5. Conclusions and future work are
presented in Section 6.

2. Non-Linear Model Predictive Control of an AAFO

The objective of MPC is to identify the optimal control sequence for a set number of
discrete time steps, known as the control horizon, to minimize a cost function within another
time interval, termed the prediction horizon. In the case of trajectory tracking, the cost
function contains the tracking error and the magnitude of the control effort. Following the
cost function optimization, the control sequence for the first discrete time step of the control
horizon is applied to the plant. In linear MPC, the minimum of the objective function can
be found by using quadratic programming, leading to the linear quadratic regulator in the
unconstrained case [16]. However, linear MPC controllers with constraints require iterative
computation using the Lagrangian algorithm, Karush-Kuhn-Tucker conditions, and other
methods [16]. These methods are computationally expensive and hard to implement in
real-time. Therefore, fast MPC methods have been developed in which the MPC controller
computes only one optimization step per discrete time step in the control horizon [17]. In
non-linear MPC, iterative optimization is required to minimize the cost function. Due to the
high computational cost required to solve the cost function, non-linear MPC is implemented
as suboptimal MPC, an alternative to optimal MPC in most cases [18].

The non-linear MPC presented here is based on a linear plant model with a non-linear
torque constraint. The constraint is based on the geared direct current (DC) motor of the
discrete non-linear series elastic actuator (DN-SEA), which should remain within the motors
recommended range of operation. The AAFO being controlled is presented in Fig. 2a, with
the discrete non-linear element shown in Fig. 2b. The device is free to rotate in the sagittal
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plane, using the DN-SEA to provide the required assistive torque to the ankle joint [15].
The plant model is described as:

Jθ̈a +Bθ̇a +Kθa = u− ud (1)

with state space representation:[
θ̇1
θ̇2

]
=

[
0 1

−B
J

−K
J

] [
θ1
θ2

]
+

[
0
1
J

]
(u− ud) (2)

where θ1 = θa and θ2 = θ̇a, J is the rotational inertia, B is the damping coefficient, K is
the stiffness of the AAFO at the ankle joint, and θa, θ̇a, and θ̈a are the angular position,
velocity, and acceleration about the ankle joint, respectively. Control variables u and ud are
the MPC and ESO’s control action and disturbance estimation, respectively. The proposed
control topology is shown in Fig. 3. The ESO estimates the disturbance acting on the
AAFO, pertaining to external or internal disturbance, such as the torque for locomotion or
an error in plant modelling. The inverse of the estimated disturbance is added to the control
signal to aid the MPC. The ESO is described in [9] as:

˙̂
θ1 = θ̂2 + β1fal (e, α1, δ)
˙̂
θ2 = θ̂3 +

u−ud−Bθ̂2
J

+ β2fal (e, α2, δ) ,
˙̂
θ3 = β3fal (e, α3, δ)

where ud = Jθ̂3 (3)

where θ̂1, θ̂2, θ̂3 are the observed states of θa, θ̇a, θ̈a, the observed error is e = θa − θ̂a ,
α1 = 3 · 102, α2 = 3 · 104, α3 = 1 · 106, δ = 0.001, and fal (e, α, δ) is the non-linear gain
function defined as [19]:

fal (e, α, δ) =

{
e

d1−α , |e| ≤ δ

|e|αsign(e), |e| ≥ δ
(4)

The scalar values β1, β2, and β3 are determined by manual pole placement at −100 as de-
scribed in [9], inspired by the work in [20]. The MPC controller has three main components:
(1) The cost function determines the controller response to the desired input based on it’s
architecture and weighting matrices, (2) the method of initial control horizon selection, and
(3) subsequent optimization allows the sub-optimal control sequence to be identified within
a short time.

2.1. Cost Function

The AAFO’s cost function tracks the desired trajectory, while minimizing the assistance
provided by the AAFO, all while abiding by the system constraints. The proposed AAFO
has a non-linear constraint, with the applied torque of the DC motor and the torque trans-
mitted to the ankle joint having a non-linear relationship. The constraint corresponds to
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Figure 3: The proposed control system combining the MPC controller and an ESO. The MPC controller is

provided with the desired trajectory (θ⃗d), the plant’s estimated angular position and speed (θ̂a,
ˆ̇
θa), and the

estimated disturbance torque ud. The MPC control provides the optimal control torque u to the DN-SEA
and ESO. The actuator applied torque ua (ua = u − ud in the ideal case) is applied to the AAFO plant
which determines the ankle position and feeds it to the ESO.

the maximum recommended torque of the motor and gearbox. The inequality constraint is
applied as a penalty function in a basic MPC quadratic cost function, expressed as:

C (u⃗, ud) =
∥∥∥θ⃗d − θ⃗a

∥∥∥2
Q︸ ︷︷ ︸

Trajectory

+
∥∥u⃗∥∥2

R︸ ︷︷ ︸
Control

+
∥∥∥Ca(um(u⃗, ud, θ⃗a))

∥∥∥2
S︸ ︷︷ ︸

Penalty Function

(5)

with:

θ⃗d = [θd1 . . . θdN ], θ⃗a = [θa1 . . . θaN ], u⃗ = [u1 . . . uM ]

where Q, R, and S are positive definite weighting matrices, θ⃗d and θ⃗aare the desired trajec-
tory and estimated plant output for a fixed prediction horizon of length N ; u⃗ is the required
torque at the ankle for a fixed control horizon of length M , where M ≤ N . If M < N , the
last value in the control horizon is used for the remainder of the prediction horizon. The
weighting matrix Q is linearly decreasing, such that trajectory tracking errors early in the
prediction horizon significantly affect the cost function. The opposite is true for the R and S
matrices, with a linearly increasing weight within the matrices. The linearly increasing and
decreasing weighting matrices result in a cost function that minimizes trajectory tracking in
the immediate prediction horizon, while minimizing the applied assistance at the end of the
control horizon. Function Ca is a quadratic penalty forcing the applied motor torque to re-
main within the recommended operating range ([−ummax ummax ]) of the motor and gearbox,
defined as:

Ca(um(u, ud, θ)) =

{
(|um(u, ud, θ)| − ummax)

2 , |um(u, ud, θ)| > ummax

0, Otherwise
(6)

and um(u, ud, θ) is determined by [15]:

um(u, ud, θ) = (u− ud)

(
a cos (θm − θb)

c sin (θ − θb)

)
(7)

where a and c are link lengths of the DN-SEA, θb is the absolute angle of link b with respect
to the origin, and θm is the motor’s position, see Fig. 2b. The parameters and formulations
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Figure 4: Ankle and motor torque relationship of the DN-SEA under varied ankle position. The nonlinear
relationship between the ankle and motor torque is shown in the surface plot a) in conjunction with the
contour plot b) and torque comparison plot c). It is clear that the relationship between the torque at the
ankle and motor are dependent on the position of the ankle.

are further described in [15]. The maximum applied torque at the ankle joint varies depend-
ing on θ, creating the non-linearity depicted in Fig. 4. The implementation of a penalty
function is used instead of a hard constraint, as the motor and gearbox combination can
achieve torque above the recommended operation limit, however, instances of high torque
should be minimized. The penalty function does not guarentee constraint adherence but
instead encourages the motor torque to remain within the recommended range of operation.
Additionally, the unconstrained optimization problem is significantly faster to compute. The
proposed cost function targets the minimization of the trajectory tracking error, magnitude
of the control effort, while encouraging the applied motor torque to remain within an ac-
ceptable limit. With the plant and cost function defined, the minimization of the objective
function can be achieved using various methods. However, to reach real-time operation,
non-linear MPC requires an initial estimate of a control horizon in close proximity to a local
minimum.

2.2. Initial Population of the Control Horizon

Given the desired angular trajectory (θ⃗d), the time discretization (∆t), and control (M)
and prediction (N) horizon lengths, the initial values of the control horizon (u⃗) can be
determined by assuming invariant acceleration. In the case ∆t is sufficiently small, the
desired acceleration (θ̈d) at each point in the control horizon is determined by:

θ̈d(i) =
2
(
θd(i)− θs − θ̇s∆t

)
∆t2

,∀ i ∈ [1,M ] (8)

where θd(i) is the desired position at prediction horizon index i, and θs and θ̇s are the

simulated position and velocity of the plant, equal to θs = θ̂a and θ̇s =
ˆ̇θa, when i = 1. The

ESO is critical as it provides a sufficient observation of θ̇a required for initialization. The
desired rotational acceleration is translated to the estimated control torque (ue), using the
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Figure 5: a) Linear approximation control in response to a step input of 0.1 rad at t = 0.02 s. b) Result of
linear approximation control with varying saturation gains (α).

average speed and position:

ue(i) = Jθ̈d(i) +B

(
θ̇d(i) + θ̇s

2

)
+K

(
θd(i) + θs

2

)
(9)

with:
θ̇d(i) = θ̇s + θ̈d(i)∆t.

The plant is then simulated with control ue(i) for time ∆t to determine the simulated
plant’s position (θs) and velocity (θ̇s). The remainder of the control horizon (M) is then
incrementally determined using the position determined at the last time stamp and the
desired position at the next time stamp (θd(i)). If M < N , the last control horizon value
(ue(M)) is determined using the last position of the prediction horizon θd(N).

The control horizon is initially tested in response to a step input, see Fig. 5a. The
response is marginally stable and is not a suitable initial control sequence. Therefore, to
reduce the chattering control signal presented, the non-linear gain function with δ = 0 and
e = ue(i) is used, modifying (4) to:

fal (ue(i), α) = |ue(i)|αsign(ue(i)). (10)

This modified function dampens the determined control input,where α ∈ [0, 1] is the satu-
ration gain, and i ∈ [1,M ] is the index of u⃗e. Eq. (10) is implemented before the simulation
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of time ∆t during each time step of the initialization. Implementing (10) results in a stable
response to a step input when α < 1, see Fig. 5b. The proposed control initialization
method provides a sufficient initial guess for the MPC controller, where tuning parameter
α can be adjusted to place the optimizer in the region of the desired response.

2.3. Optimization

The cost function can now be minimized using Newton-based methods, starting at the
initial guess. The optimization is unconstrained, allowing the controller to focus on assisting
the user while minimizing the risk of the controller applying a stiff control correction if a
user violates a constraint. The Gauss-Newton optimizer is commonly used to minimize
least-squared objective functions, where the algorithm targets the closest minima/maxima
to the initial guess. Due to the non-linearity imposed by the penalty function, the Newton-
Raphson approach can be used before exploring the minima using Gauss-Newton. The
Newton-Raphson method aims to identify a root of a given function, with the update term
f(x)
f ′(x)

, to target the position of a local minimum in the objective space. Multi-variate Newton-
Raphson updates the decision variables via:

u⃗k+1 = u⃗k + γL−1
k ck︸ ︷︷ ︸

Update Term

(11)

where uk is the optimized control vector, initially uk = ue, k is the previous iteration, ck is
the cost at iteration k, L is the Jacobian matrix, and γ is the Newton step scaling factor.
When the Newton-Raphson method approaches a local minimum, the magnitude of the
update term increases, reducing the ability of the optimizer to determine the best control
sequence in the minima. To closely identify the local minima, Gauss-Newton method is then
evaluated to find the absolute minima, with an update term of f ′(x)f(x)

f ′′(x)
, expressed as:

u⃗k+1 = u⃗k + γ
(
LkL

T
k + λI

)−1
Lkck︸ ︷︷ ︸

Update Term

(12)

where LkL
T
k is an approximation of the Hessian matrix, and I is an identity matrix combined

with a small scalar λ to ensure matrix inversion.
The step size γ can also be varied to increase performance. In this work, the search

method from the fast jaguar algorithm is adapted [21]. Once an instance of a minimum is
identified and the following iteration results in a worse objective function value, the variable
step method is implemented, where the new step scalar is updated as:

γ =


2γ, if Ck+1 < Ck

1, if γ > 1
γ
2
, Otherwise

(13)

in which Ck+1 and Ck is the result of the objective function at the current and previous
iteration, and γ is limited to ≤ 1. The complete optimization flow is presented in Fig. 6,
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Figure 6: MPC optimization method, in which the Newton-Raphson algorithm (blue) is implemented z
times followed by z − x Gauss-Newton (green) iterations, where x and k are the total number and current
iteration, respectively.

where x, z, and k are the total number of iterations, number of Newton-Raphson iterations,
and current iteration, respectively. To clarify, the Jacobian used for the Newton-based
optimization is determined iteratively, as the derivative of the cost function described in (5)
can not be determined analytically. At each iteration, the Jacobian is determined by:

Lk =
ck − ck−1

u⃗k − u⃗k−1

. (14)

To initialize the Jacobian from the initial guess, the cost and control of the initial guess are
denoted ck and u⃗k. The initial guess is then shifted by a scaling factor (u⃗k−1 = u⃗k(1 + η)),
where η is sufficiently small.

3. Simulation Results

Simulations are conducted to analyze the benefits and restrictions of the proposed con-
troller in conjunction with an ESO. The MPC controller is initialized with a control and
prediction horizon of M = 3 and N = 5, operating at 100 Hz with the 200 Hz ESO presented
in [9]. To minimize the objective function, the optimization method is set to conduct 50
iterations (x = 50), starting with two Newton-Raphson iterations (z = 2), with cost function
matrices Q, R, and S having weights of 10, 10−4, and 1, respectively, resulting in weighting
matrices of:

Q =


10 0 0 0 0
0 8.13 0 0 0
0 0 6.25 0 0
0 0 0 4.38 0
0 0 0 0 2.50

 , R =

6.25e−5 0 0
0 8.13e−5 0
0 0 10.0e−5

 , S =

0.63 0 0
0 0.81 0
0 0 1

 .

The low control weight R is based on the high torque required by the ankle joint and its
low angular range. Fig. 1 shows that the ankle has a range of only 0.57 radians, where the
torque output of the ankle joint reached 1.35 Nm per kg of the user’s mass. To find the ideal
saturation gain for the initial control horizon, the plant is exposed to a ramp input with
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α ∈ [0, 1]. A saturation gain of α = 0.65 was selected from the objective function minima
as α is varied. For a MPC comparator, a discrete PD controller with a sampling rate of 1
kHz is implemented, tuned to achieve a 0.063s settling time when exposed to a 0.1 rad step
input. The ESO is combined with the PD control to create an accurate comparison. The
PD controller is given a proportional and derivative gain of 200 and 4, respectively. The
result of the MPC and PD tunings are 127 ms and 54 ms settling times, respectively. The
gait trajectory from [4] is used as the desired angular trajectory of the ankle joint and gait
disturbance for the simulations.

Three types of simulations are conducted to compare the controllers i.e., with no distur-
bance, nominal gait disturbance, and sinusoidal disturbance. Since the plant parameters of
the AAFO in combination with the foot cannot be measured, three variations of the plant
model are simulated:

1. No Modelling Error: The MPC, ESO, and simulated plant have identical parameters.

2. Plant Modelling Error 1 (PME1): The MPC and ESO are given the same plant param-
eters of the first variation, however, the simulated plant is given a 33% higher inertial
value.

3. Plant Modelling Error 2 (PME2): The MPC and ESO are given the same plant pa-
rameters of the first variation, however, the simulated plant is given 33% and 50%
lower inertial and damping values, respectively.

The simulations were conducted with a gait speed of 1.1 s with a 3-step snapshot presented
in Fig. 7 and 8, with the respective root mean square tracking error (RMSE) presented in
Table 1. Large modelling discrepancies are used in this test as the combined inertial and
damping parameters of the AAFO and foot can not be measured, leading to potentially
large modelling errors in the controller’s model. The results show that the MPC and ESO
combination is the best trajectory tracking controller, even in the presence of high amplitude
gait and sinusoidal disturbance. The combination allows the MPC controller to focus on
accurate trajectory tracking, while the ESO rejects any disturbance applied to the plant.
Fig. 7c and 7d show the estimated disturbance lags behind the true disturbance, resulting
in an increased trajectory tracking error when the disturbance torque changes. In Fig. 8a
and d, it is evident that the ESO can identify and reject the disturbance due to the plant
modelling error, where PME1 and PME2 result in opposing disturbance torques due to the
large difference in rotational inertia. The trend is visible throughout Fig. 8, where the
disturbance estimated with PME deviates from the induced disturbance. In the case of
PME2, the trajectory tracking error is best, as the simulated plant has a reduced inertial
and damping parameter, resulting in a stiff and quick plant response. The MPC and ESO
can handle external and internal disturbances while achieving better tracking performance
compared to an ESO and PD controller tuned for a fast-settling time. The PD controller is
only advantageous when compared to the MPC with no ESO, as the high gains of the PD
controller compensate for the induced disturbance.

11



Table 1: RMSE Simulation Results for MPC and PD controller in combination with the ESO in the presence
of gait and sinusoidal disturbance (10−3).

Controller
No Gait Sinusoidal

Disturbance Disturbance Disturbance

MPC 2.09 336 540
MPC+ESO 1.80 9.74 8.36
MPC+ESO PME1 3.29 11.0 9.30
MPC+ESO PME2 1.56 9.54 7.38
PD 5.20 142 166
PD+ESO 5.16 11.5 9.52
PD+ESO PME1 5.46 11.7 9.68
PD+ESO PME2 4.96 11.3 9.41

Figure 7: a) Simulation results of the standalone MPC and PD controller without disturbances, b) simulation
results of the MPC and PD controller combined with the ESO, c) simulation results with gait disturbance for
a 40 kg user and d) 1 Hz 40 Nm sinusoidal disturbances. Tracking errors are based on the actual and desired
angular trajectory of the ankle joint, presented in Fig. 1. Estimated disturbance error is the difference
between the measured and rejected disturbance by the ESO and the induced disturbance torque.
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Figure 8: Simulation results of the MPC and PD controllers with the ESO in the presence of plant modelling
error. a) and d) present the response without disturbances, b) and e) show the simulation results with gait
disturbances for a 40 kg user and c) and f) present the simulation results for a 1 Hz 40 Nm sinusoidal
disturbance, for PME1 and PME2, respectively. Tracking errors are based on the actual and desired angular
trajectory of the ankle joint, presented in Fig. 1. Estimated disturbance error is the difference between the
measured and rejected disturbance by the ESO and the induced disturbance torque.
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Figure 9: MPC experimental setup, with a rigid structure 1O to fix the AAFO shank 5O. Disturbance is
created using unidirectional springs with a 3.0 N/mm 2O and 13.9 N/mm 3O stiffness, connected between
the test structure and foot bed 4O. The springs are combined to create a low, medium, and high disturbance
during plantarflexion.

4. Experimental Validation

An AAFO prototype is used to conduct trajectory tracking under varying load distur-
bances to validate the simulations. The AAFO, see Fig 9, is equipped with a DN-SEA, two
quadrature encoders to measure the ankle and motor position, and two sets of force-sensitive
resistors to synchronize the controller to the current user’s gait phase. The proposed control
system is implemented in C++ on a Windows computer (Intel Core2 Quad 2.50 GHz, 6 Gb
DDR2) with a data-acquisition card (Humusoft MF634). The program is structured into
three threads: PD motor position control (20 kHz), data logging (100 Hz), and the main
control loop, which executes the MPC controller at 100 Hz and the ESO at 200 Hz.

Two sets of experiments are conducted. In experiment 1, the AAFO is mounted on
the test stand (See Fig. 9) and is free from external disturbances. For experiment 2, the
AAFO remains in the test stand, where two sets of springs (experimentally measured to
be 3.0 N/mm and 13.9 N/mm) are used individually, and in combination, to generate an
unknown light, medium, and heavy disturbance (See Fig. 9), generating a peak torque of
16.7 Nm, 27.94 Nm, and 31.54 Nm, respectively. The MPC and PD controllers are set to
track the nominal trajectory in 3.3 s. Fig. 10 shows the trajectory tracking results of the
MPC+ESO and PD+ESO controllers for both experiments, and Table 2 displays the RMSE
and average current. The mean, standard deviation, and maximum computation time for
the MPC controller are 99.29 µs, 70.66 µs, and 396.9 µs, respectively. In contrast, the same
metrics for the PD controller are 0.34 µs, 0.08 µs, and 0.7 µs, respectively. Similarly, the
computation time of the ESO has a mean, standard deviation, and maximum of 42.8 µs,
3.7 µs, and 89.5 µs, respectively in the MPC experiment and 46.5 µs, 3.2 µs, and 120 µs,
respectively for the PD experiment.

5. Results & Discussion

The simulation and experimental results show the feasibility and benefits of the proposed
real-time MPC controller in combination with the ESO. The simulations prove that the pro-
posed architecture has significant benefits, with an RMSE reduction of 58.3%, 12.3%, and
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Table 2: Experimental Results

Disturbance MPC+ESO PD+ESO MPC+ESO PD+ESO
Tracking Error RMSE (10−3) Average Current [mA]

No Dist. 89.4 70.6 484 467
Light Dist. 95.4 86.9 432 427
Medium Dist. 97.5 90.0 446 448
High Dist. 106.2 105.5 528 648

Figure 10: MPC and PD controller tracking without disturbance a) and in the presence of b) light distur-
bance, c) medium disturbance, and d) heavy disturbance.
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Figure 11: a) Physical testing desire and actual trajectories. The delay is caused by the employed DC motor
and gearbox. The time delay and step input of the motor can be seen in b). It is noted that the physical
limitations of the AAFO actuator in the presence of no disturbance restricts the dorsiflexion range of motion
to 0.174 rad.

12.6% in the presence of no disturbance, nominal gait disturbance, and sinusoidal distur-
bance with respect to the PD and ESO combination. The method proposed to determine the
initial control horizon effectively leads the MPC in sufficient trajectory tracking. However,
the implementation of the ESO must be included to accurately track the nominal trajectory
in the presence of high disturbance and errors in the plant model.

Experimental testing outlines two benefits of the MPC controller. First, the required
torque from the MPC and ESO combination is reduced by 16.3% compared to the PD
and ESO combination in the presence of high disturbances. Fig. 10 shows the proactive
approach of the MPC controller reducing the control value in anticipation of the future
trajectory. Table. 2 shows that the MPC and PD controller have similar tracking errors,
with a reduced input current seen by the MPC during high disturbances. The results show
that the MPC considers a balanced control approach instead of the high-gain PD controller.
Second, the experiments show the real-time capability of the proposed controller. The
combined maximum MPC and ESO computation time did not exceed 486.4 µs, which is
significantly less than the required cycle time of the ESO and MPC controller (5 and 10 ms,
respectively).

Fig. 11, shows the trajectory tracking capability of the proposed real-time MPC and
ESO and that of the PD and ESO controller. A significant contribution to the observed
error is the presence of torque application delay. A delay is present between the MPC and
PD controllers response and the desired trajectories (see Fig. 11a). The delay is a result of
the activation time of the geared DC motor. Fig. 11b shows the motor’s position response to
a step input position. 90 ms elapses before motion is present at the end of the gearbox. The
delay will be included in future plant models to reduce the tracking error. Consequently,
the PD controller has increased trajectory tracking performance with an actuation delay, as
the high tuning gains generate a substantial torque with the increased tracking error. The
effect is also present in the case of the MPC and PD only controllers in Table. 1, due to the
high tracking error. The proposed combination does outperform the PD controller in the
physical testing at higher disturbances while minimizing the amount of energy used.

The MPC and ESO combination is an effective control strategy for AAFOs. The MPC
controller targets accurate trajectory tracking with the conscious effort of minimizing the
applied assistance to the user. The ESO identifies and rejects external and internal dis-
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turbances to the system. In the future, the ESO could be seen as a dependency to the
AAFO user, as the disturbance due to insufficient push-off torque from the users will be
supplemented by the ESO. Therefore, limits can be applied to the ESO to allow only a
certain percentage of the nominal ankle torque to be applied via the ESO. In the presence of
increased muscle activation of the user during operation, the weight matrix R of the MPC
cost function can be incremented, and the percentage of nominal ankle torque from the ESO
can be decremented, until there is no longer assistance required for user locomotion.

6. Conclusion

This work presents a combined non-linear MPC and ESO for active ankle foot orthoses.
The AAFO is considered a linear plant with non-linear constraints due to the actuator’s
non-linearities. Therefore, a non-linear MPC controller is developed to achieve accurate
trajectory tracking, with an ESO to minimize the effect of gait disturbances and plant
modelling errors. Simulation and physical tests show the tracking accuracy and real-time
capability of the proposed control topology. The benefit of the MPC implementation is the
inclusion of the control magnitude in the cost function, allowing the controller to minimize
assistance to the user experiencing temporary or persisting foot-drop.

Future work will focus on testing the device with a motor of low latency and including
the mechanical delay into the plant model. It is estimated that this will eliminate most of the
error between the simulated and physical results. Finally, adaptive laws can be introduced
into the controller, actively minimizing plant modelling errors.
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