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Abstract—Infrared thermography is emerging as a vital non-
invasive testing and evaluation tool in biomedical applications
in order to identify surface and sub-surface abnormalities in
biomaterials. Among various active infrared thermographic
approaches, recently introduced aperiodic modulated pulse
compression favorable thermographic techniques gained their
importance as these approaches provide higher sensitivity and
resolution for the extraction of anomalies located deep inside
the material under test. Further, these techniques facilitate the
usage of moderate heat inputs unlike traditional pulse-based
thermographic methods and provide better depth resolution
compared to lock-in thermography. This paper highlights the
merits of novel pulse compression favorable frequency modu-
lated thermal wave imaging method, a widely accepted non-
stationary thermographic approach, to detect the severity of
osteoporosis in modeled human bone. Detection is achieved
by estimating the effusivity of the bone at different stages
of osteoporosis with the help of correlation coefficient values
obtained from the compressed pulse. A 3-D finite element
analysis is carried out on a multilayer bone model with different
thermo-physical properties of bone to characterize different
stages of the osteoporosis. The obtained correlation-based results
are compared with the extensively used principal component
analysis approach.

Index Terms—osteoporosis, frequency modulated thermal
wave imaging, pulse compression, principal component analysis,
COMSOL Multiphysics

I. INTRODUCTION

Osteoporosis is one of the most common diseases in human
bones that degrades the strength of the bone and may lead to
increased liability to fractures likely in the spine, hip, and

wrist [1]-[5]. Even though a variety of the testing modalities
are widely in use for diagnosis of osteoporosis such as
Quantitative Computed Tomography (QCT), Peripheral QCT
(pQCT), Quantitative Ultra-Sound approaches (QUS), Digital
X-ray Radiogrammetry (DXR), Radiographic Absorptiometry
(RA), High-Resolution CT (HRCT), Dual Energy X-ray Ab-
sorptiometry (DEXA), and peripheral DXA (pDXA), the most
widely used bench mark diagnosis method is Dual Energy X-
ray Absorptiometry (DEXA) for estimating the bone quality
by measuring the Bone Mineral Density (BMD). BMD is
a parameter to determine the important score known as T-
score that determines the stage of the osteoporosis. Superior
properties of DEXA uncover the prospective for new medical
applications and researches. The scheme proposed in this
paper overcomes the traditionally used gold standard, DEXA,
such as limited area of examination and use of ionizing
radiation. The present work proposes a novel non-contact,
non-destructive, non-ionizing, safe, reliable and wide-area
monitoring technique known as infrared thermography, to
estimate the severity of osteoporosis. In this method, the
condition of objects is monitored by means of observing
temperature variations over the surface of the object under
examination. This may be realized either in passive or in
active manner. In passive method, thermal history over the
test object is recorded in the absence of any external heat
input. However, the usage of this approach is restricted due to
its inability to quantify the anomalies and restricted depth of
probing. Contrary to this, active thermographic approach leads
to identification of anomalies hidden deep inside the material
with better sensitivity and resolution. Active optical thermo-
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graphic methods involve the heating of the surface of sample
under test by heat stimulus of known amplitude, duration
and bandwidth. The predefined frequency modulated thermal
stimulus with known bandwidth and amplitude levels facili-
tates to provide the quantitative information about the stage of
osteoporosis. In active method, several excitation approaches
have been proposed to introduce sufficient contrast between
the defective and the non-defective region. Based on the
applied thermal stimulus, these methods can be categorized
as pulse-based or modulated thermographic modalities. Pulse
Thermography (PT) and Pulse Phase Thermography (PPT)
are well-known pulsed infrared imaging modalities. However,
the pulse-based thermographic techniques PT & PPT require
high peak power heat sources in order to improve the test
resolution [6]-[10]. Modulated thermographic methods may
be periodic or aperiodic. Lock-in Thermography (LT) is a
popular modulated thermographic technique in which the heat
sources are modulated in a sinusoidal manner at a particular
frequency to launch a certain wavelength into the test object.
The resulting temperature history is captured during active
heating and is further analyzed to get phase information
similar to PPT. Although LT makes use of moderately low
power heat sources to reveal anomalies hidden inside the
test object, however the introduced thermal wave with single
wavelength restricts its use in detecting anomalies located
at various depths within the material. In order to conquer
the aforesaid limitations, the present work attempts to test
the capabilities of non-stationary aperiodic modulated pulse
compression favorable thermographic technique which pro-
vides complete depth scanning in a short time span using low
peak power thermal inputs [6-12]. The considered approach
provides a quantitative evaluation for estimation of the stage
of the osteoporosis by using high-resolution Linear Frequency
Modulated Thermal Wave Imaging (LFMTWI) technique.
This method utilizes a frequency modulated heat stimulus to
launch a desired range of frequencies into the test object.
The temperature history captured over the object under test is
analyzed using correlation-based pulse compression approach.
Further the results are compared with the traditional Principal
Component Analysis (PCA)-based infrared thermographic
technique named as principal component thermography. The
presented results show that PCA-based data analysis response
is nearly like mean-zero temporal thermal distribution hav-
ing reduced dynamic range, whereas correlation-based pulse
compression analysis localize the supplied energy to narrow
duration rather than redistributing the imposed energy within
the whole excitation period.

II. LINEAR FREQUENCY MODULATED THERMAL WAVE
IMAGING

In this technique, a linear frequency modulated (chirp)
thermal excitation within desired band of frequencies with
significant and equal energies is deposited onto the object un-
der test. Due to the imposed thermal stimulus, thermal waves
are generated which diffuse into test object and cause an
analogous time varying thermal distribution over the object.

The flow of heat is modified due to the presence of hidden
anomalies which leads to generation of thermal gradient over
the surface of the object. The resulting thermal distribution is
attained from the one-dimensional (1-D) Fourier conduction
equation in the absence of heat source or sink within the
object given as [13-16]:

∂2T (x, t)

∂x2
=

1

α

∂T (x, t)

∂t
, (1)

where T(x,t) is the instantaneous temperature at a certain
spatial location x, at a given time t and α= K/ρc is thermal
diffusivity of material, K- thermal conductivity, ρ- density and
c- specific heat.

Considering boundary conditions (x=0, ϕ(t)- surface tem-
perature varying with time t and x → ∞,T- ambient tempera-
ture) and initial condition (T(x,t=0) = 0), the obtained solution
to heat equation for a semi-infinite solid is expressed as:

T (x, t) =
2√
π

∫ ∞

x/2
√
αt

ϕ(t− x2

4αµ2
)e−µ2

dµ. (2)

The thermal stimulus applied over the test material is
written as:

Q(x = 0, t) = Q0e
2πj(ft+Bt2

2τ ), (3)

where Q0 is the peak heat flux, B is the bandwidth of the
applied stimulus, f is the initial (start) frequency of the chirp
and τ is the excitation duration.

A similar thermal distribution is generated over the surface
of object under test that is represented as:

T (x = 0, t) = T∞ + T0e
2πj(ft+Bt2

2τ ) (4)

and
T∞ = lim

x→∞
T (x, t), (5)

where T0 - peak temperature and T∞ is the temperature
attained using boundary condition x → ∞. Assuming that
boundary condition T∞ is zero, and dynamic variations in
temperature data are taken into consideration. Thus, (4) may
be expressed as:

T (x = 0, t) = T0e
2πj(ft+Bt2

2τ ). (6)

So, the resulting temperature response of (1) may be
represented as:

T (x, t) = T0e
2πj(ft+Bt2

2τ )e−x
√

π
α (f+Bt

τ )e−jx
√

π
α (f+Bt

τ )

−2T0√
π
e2πj(ft+

Bt2

2τ )

∫ x/2
√
αt

0

e
−πjx2

2αµ2 (f+Bt
τ )

e−µ2

dµ.
(7)

The second part of (7) corresponds to transient response
which decays with the increase in time t and hence only the
first steady-state term remains.

As the thermal wave propagates through the material, it gets
attenuated. Thermal diffusion length is depth where energy of
thermal signal reduces to 1/e times of its surface value and it
can be obtained as:

µ′ =

√
α

π(f + Bt
τ )

, (8)
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where B/τ is sweep rate of FM excitation. Whole depth
scanning is assured by employing an appropriate range of fre-
quencies in a test run as is described by the relation between
bandwidth of the imposed stimulus and the diffusion length.
The diffusion length formulation equals the diffusion length
obtained for LT (Lock-in Thermography), if B/τ (sweep rate
of frequency) is made zero.

Thermal wavelength (λ) for LFMTWI is represented as [17-
19]:

λ = 2πµ′ = 2π

√
α

π(f + Bt
τ )

. (9)

The thermal wavelength relies upon the frequency sweep
of the imposed heat flux, which helps to detect the pores of
different lateral dimensions situated at different depths inside
the bone in a single experimentation cycle.

III. ACQUIRED DATA POST-PROCESSING METHODS

To enhance the anomaly signature, suitable post-processing
analysis methods are realized on the captured temperature
data. Several data processing methods have been developed
to improve the performance of the thermographic systems in
terms of resolution and sensitivity. In this work, correlation-
based data processing method is implemented for estimating
the stage of the osteoporosis and further compared with the
results obtained using PCA approach. The two considered
approaches are employed as presented below:

A. Correlation-based Pulse Compression Approach

In this method, cross-correlation g(τ ) between zero-mean
observed temporal temperature data of the healthy bone
Tref (x,t) and the temporal thermal distribution of osteoporotic
bone sample T(x,t) is computed as:

g(τ) =

∫ ∞

−∞
T (x, t)Tref (τ + t)dt. (10)

Pulse compression is advantageous as it concentrates the
imposed energy to localized time period that enhances the
performance of the thermographic system.

B. Principal Component Analysis

In order to compute principal components, the captured
thermal data is arranged in a three dimensional (3-D) thermal
matrix T(i,j,k), where i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny , and
k = 1, 2, . . . , Nt. Here, Nx is number of pixels along length
corresponding to number of rows, Ny is the number of pixels
along breadth corresponding to number of columns and Nt

refers to the number of thermograms. The obtained 3-D matrix
is reorganized in a 2-D matrix so that the temporal variations
appear column-wise and the spatial variations appear row-
wise i.e. the columns contain the information about each
thermogram and the row contain number of thermograms.
The principal component coefficients and the corresponding
variances are calculated by Eigen functions of covariance data
matrix. The obtained variances are arranged in descendent or-
der, the coefficient matrix is arranged in the same way. Further
principal components are attained by multiplying standardized

data with the obtained descendent order coefficient matrix. At
last, 3-D matrix is formed using the resultant data.

In the present work, finite element analysis is carried out
to simulate a multilayer human bone model. The modeled
sample comprises of four different layers- skin, fat, muscle,
bone with thickness of 0.5, 0.5, 0.5 and 3 mm respectively.
The model sample dimensions are 10mm*10mm*4.5mm as
illustrated in Fig. 1. The thermo-physical properties of the
considered layers are presented in Table I. Further, the fourth
layer (Bone) is considered to have different thermo-physical
properties as given in Table I to represent different stages
of osteoporosis (S1, S2, S3 and S4). The modeled sample is
considered at normal body temperature (310.15K).

IV. RESULTS AND DISCUSSION

A linear frequency modulated thermal stimulus of 100
W/m2 with frequencies varying from 0.005 Hz to 0.5 Hz for
a duration of 200 s as shown in the Fig. 2, is imposed onto
the front side (skin) of the considered model.

Fig. 1. Three-dimensional representation of modeled multilayered bone
sample with skin, fat and muscle.

TABLE I
THERMOPHYSICAL PROPERTIES OF TISSUE LAYERS [17-20]

Region Density Thermal Specific heat Thermal
(ρ) conductivity (c) effusivity

kg/m3 (K) J/kgK (e =
√
Kρc)

W/mK Ws1/2/m2K
Skin 1109 0.37 3391 1179.589
Fat 911 0.21 2348 670.2208

Muscle 1090 0.49 3421 1351.723
Bone 2420 0.616 1430 1460.044

S1 2310 0.588 1365 1361.636
S2 2200 0.56 1300 1265.543
S3 2090 0.532 1235 1171.824
S4 1980 0.504 1170 1080.54

The resulting temporal thermal history over the skin layer
is obtained at a frame rate of 10 Hz. To this thermal
response, Additive White Gaussian Noise (AWGN) having
Signal to Noise Ratio (SNR) of 120 dB is added to validate
the capabilities of the considered LFMTWI method under
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Fig. 2. Linear frequency modulated thermal excitation signal employed to
heat the modeled osteoporosis sample.

practical conditions. The obtained noisy thermal distribution
for different stages of osteoporosis (S1, S2, S3 and S4) is
illustrated in Fig. 3.

To reconstruct zero-mean temperature distribution, a pulse
of 200 s duration is applied on the sample. The concerned
thermal response is recorded and is removed from the
temperature distribution obtained from the given frequency
modulated thermal excitation to obtain a mean zero thermal
response. Fig. 4 and Fig. 5 show pulse heating response and
zero-mean temporal temperature distribution respectively.

Then the noisy temperature data is analyzed with PCA
approach and the zero-mean thermal data is processed using
correlation-based analysis scheme. The obtained temporal
temperature distribution reconstructed using the first principal
component is shown in Fig. 6. To implement correlation-
based pulse compression approach, the zero-mean temporal
temperature data of healthy bone is cross-correlated with the
zero-mean temporal temperature data of osteoporotic bone of
various stages. The obtained correlation profiles for different
osteoporotic stages are illustrated in Fig. 7.

Fig. 3. Obtained temporal temperature distribution over the simulated bone
sample for linear frequency modulated thermal stimulus with AWGN of
120dB for various stages of osteoporosis in the modeled bone sample

It is clear from the results obtained from both the PCA as
well as correlation-based pulse compression approach that the
PCA merely reduces the dimensionality of large thermal data
sets as it is a dimension reduction scheme and does not pro-
vide any energy concentration capabilities as the correlation-
based pulse compression approach. The reconstructed thermal
profiles from the first principle component is more or less
similar to the raw temperature profile except there a reduction
in the dynamic range of temperature profiles.

Fig. 4. Obtained temporal temperature distribution over simulated bone
sample with pulse heat input for various stages of osteoporosis in the modeled
bone sample

Fig. 5. Obtained zero-mean temporal temperature distribution for various
stages of osteoporosis in the modeled bone sample

Fig. 6. Obtained temporal thermal distribution at a chosen location from
first principal component for various stages of osteoporosis in the modeled
bone sample

Fig. 7. Reconstructed compressed pulse obtained from correlation approach
for various stages of osteoporosis in the modeled bone sample

Authorized licensed use limited to: Carleton University. Downloaded on May 12,2023 at 13:25:43 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8 shows the effect of effusivity on the obtained
correlation coefficient of the compressed pulse. It is clear
that the effusivity of the osteoporotic bone decreases with
its severity (osteoporosis) which results a change in the
correlation coefficient in comparison with the sound bone.
The trend clearly shows the increase in correlation coefficient
with the increase in severity of the osteoporosis.

Fig. 8. Thermal effusivity versus correlation coefficient for the simulated
bone model

V. CONCLUSION

This work introduces pulse compression favorable Linear
Frequency Modulated Thermal Wave Imaging (LFMTWI)
for the estimation of various stages of osteoporosis. The
capabilities of the proposed approach are studied by employ-
ing the correlation-based pulse compression approach and
are compared with the results obtained from traditionally
used principal component-based post-processing scheme. It
is observed from the obtained results using the adopted
post processing approaches that principal component ther-
mography is just a dynamic range reduction of temperature
response and does not have the capabilities in providing the
energy concentration as in the case of correlation-based post
processing approaches for estimation of stage of osteoporosis.
Even though the proposed method seems to be promising due
to its above mentioned merits, it has to be validated through
experiments to determine future applicability for real clinical
studies. In addition, effects of parameters such as peak power
of illuminating sources, sweeping bandwidth of modulating
source and penetration depth need to be investigated thor-
oughly before adopting for clinical studies.

REFERENCES

[1] T.-L. Yang et al., ”A road map for understanding molecular and genetic
determinants of osteoporosis,” Nature Reviews Endocrinology, pp. 1-13,
2019.

[2] M. R. McClung, P. D. Miller, and S. E. Papapoulos, ”Osteoporosis: An
overview,” Primer on the Metabolic Bone Diseases and Disorders of
Mineral Metabolism, pp. 393-397, 2018.

[3] A. L. Adams et al., ”Osteoporosis and hip fracture risk from routine
computed tomography scans: the fracture, osteoporosis, and CT utiliza-
tion study (FOCUS),” Journal of Bone and Mineral Research, vol. 33,
no. 7, pp. 1291-1301, 2018.

[4] N. Harvey, E. Dennison, and C. Cooper, ”Epidemiology of osteoporotic
fractures,” Primer on the Metabolic Bone Diseases and Disorders of
Mineral Metabolism, vol. 7, pp. 198-203, 2009.

[5] N. R. Fuggle, E. M. Curtis, K. A. Ward, N. C. Harvey, E. M.
Dennison, and C. Cooper, ”Fracture prediction, imaging and screening
in osteoporosis,” Nature Reviews Endocrinology, vol. 15, no. 9, pp.
535-547, 2019.

[6] G. Dua and R. Mulaveesala, ”Infrared thermography for detection and
evaluation of bone density variations by non-stationary thermal wave
imaging,” Biomedical Physics & Engineering Express, vol. 3, no. 1, p.
017006, 2017.

[7] V. Arora, R. Mulaveesala, A. Rani, and A. Sharma, ”Digitised frequency
modulated thermal wave imaging for non-destructive testing and eval-
uation of glass fibre reinforced polymers,” Nondestructive Testing and
Evaluation, vol. 34, no. 1, pp. 23-32, 2019.

[8] V. Arora, J. A. Siddiqui, R. Mulaveesala, and A. Muniyappa, ”Pulse
compression approach to nonstationary infrared thermal wave imaging
for nondestructive testing of carbon fiber reinforced polymers,” IEEE
Sensors Journal, vol. 15, no. 2, pp. 663-664, 2014.

[9] G. Dua, N. Kumar, and R. Mulaveesala, ”Applications of digitized
frequency modulated thermal wave imaging for bone diagnostics,” in
2015 International Conference on Signal Processing and Communica-
tion Engineering Systems, pp. 518-521, 2015.

[10] R. Mulaveesala, G. Dua, V. Arora, J. A. Siddiqui, and A. Muniyappa,
”Pulse compression favourable aperiodic infrared imaging approach
for non-destructive testing and evaluation of bio-materials,” in Ther-
mosense: Thermal Infrared Applications XXXIX, 2017, vol. 10214:
International Society for Optics and Photonics, p. 102140G.

[11] R. Mulaveesala, J. Siddiqui, V. Arora, and A. Muniyappa, Pulse com-
pression approach to digitized frequency modulated infrared imaging
for non-destructive testing of carbon fibre reinforced polymers (SPIE
Sensing Technology + Applications). SPIE, 2014.

[12] R. Mulaveesala and S. Tuli, ”Digitized frequency modulated thermal
wave imaging for nondestructive testing,” Materials Evaluation, vol. 63,
no. 10, 2005.

[13] M. N. Ozisik, Boundary value problems of heat conduction. Courier
Corporation, 2002.

[14] G. Mulholland and M. Cobble, ”Diffusion through composite media,”
International Journal of Heat and Mass Transfer, vol. 15, no. 1, pp.
147-160, 1972.

[15] A. Haji-sheikh and J. Beck, ”Temperature solution in multi-dimensional
multi-layer bodies,” International Journal of Heat and Mass Transfer,
vol. 45, pp. 1865-1877, 2002.

[16] Z.-S. Deng and J. Liu, ”Analytical study on bioheat transfer problems
with spatial or transient heating on skin surface or inside biological
bodies,” J. Biomech. Eng., vol. 124, no. 6, pp. 638-649, 2002.

[17] J. C. Jaeger and H. S. Carslaw, Conduction of heat in solids. Clarendon
P, 1959.

[18] A. Sharma, R. Mulaveesala, and V. Arora, ”Novel analytical approach
for estimation of thermal diffusivity and effusivity for detection of
osteoporosis,” IEEE Sensors Journal, 20 (11), art. no. 8998228, pp.
6046-6054, 2020.

[19] A. Sharma, R. Mulaveesala, G. Dua, V. Arora, N. Kumar, ”Digitized
frequency modulated thermal wave imaging for detection and estima-
tion of osteoporosis,” IEEE Sensors Journal, 21 (13), art. no. 9286563,
pp. 14003-14010, 2021.

[20] A. Sharma, R. Mulaveesala, G. Dua, and N. Kumar, ”Linear frequency
modulated thermal wave imaging for estimation of osteoporosis: An
analytical approach,” Electronics Letters, 56 (19), pp. 1007-1010, 2020.

Authorized licensed use limited to: Carleton University. Downloaded on May 12,2023 at 13:25:43 UTC from IEEE Xplore.  Restrictions apply. 


