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Abstract— Percutaneous nephrolithotomy is the leading treat-
ment for large or irregularly shaped kidney stones. Never-
theless, gaining access to the kidney remains a challenging
component of the procedure with a steep learning curve. As
a result, the procedure would benefit from robotic assistance
to partially or fully automate this critical component of the
intervention. A key component of automated kidney access,
using a robotic manipulator, is to define and follow a tool path
planning based on preoperative imaging and a target entry
point.

In this paper, the use of the multiobjective non-dominated
sorting genetic algorithm II (NSGA-II) is proposed to plan a B-
spline curve that will be used as the tool trajectory during the
procedure. Here, NSGA-II is used to determine the anchor point
locations for a uniform 3rd order B-spline curve. The optimal
path minimizes path length, tissue potential energy due to tissue
compression, and path smoothness while maximizing the dis-
tance to obstacles. The multiobjective optimization is evaluated
using simulations and physical trials. The results show that
the planned trajectories show minimal tissue deformation, are
relatively short and smooth and do not collide with the internal
kidney structures.

I. INTRODUCTION

Percutaneous Nephrolithotomy (PCNL) is the leading
treatment for large or irregularly shaped kidney stones. This
procedure aims to remove kidney stones by making a small
incision in the patient’s back through which narrow tools
are threaded to reach the calculi [1], [2]. The most critical
aspect of this procedure is gaining proper access to the
kidney stones [3]. Despite the procedure’s clinical prevalence
for decades, only 11% of urologists gain kidney access
themselves [4]. It is estimated that urologists require roughly
36 to 60 procedures to gain proficiency [5].

During PCNL, a tool must enter through the incision made
in the patient’s back and continues at a slight angle towards
the kidney such that the tool enters the kidney in the correct
location. Once inside the kidney, the tool must be steered
towards the areas affected by kidney stones.

Inadequate tool steering leads to a higher chance of
complications and increased recovery times due to additional
injuries that may be suffered as a result of tissue damage.

We acknowledge the support of Marion Surgical and the Natural Sciences
and Engineering Research Council of Canada (NSERC), [funding reference
number 2018-06074].
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These complications, while not fatal, lead to longer recovery
times and excessive bleeding [6], [7], [8], [9]. These issues
make it clear that partially or fully automating kidney ac-
cess through robotic assistance could improve the procedure
success rates and increase patient safety [10], [11], [12].
Automation of a sub-task during surgery allows the surgeon
to take on a more supervisory role during the procedure and
shifts much of the workload to procedure preparation, such
as preoperative imaging and tool path planning.

Path planning is integral to any automated surgical pro-
cedure. A carefully planned path allows the robot to per-
form its task effectively and precisely with minimal risks
to the outcome of a procedure. There are a few common
traits of a desirable path regardless of application, such
as being relatively short, smooth, and avoiding obstacles.
During PCNL specifically, the ideal path is the one that
provides access to the kidney while avoiding surrounding
tissue and other anatomical structures that are at risk of
unnecessary puncture due to their proximity to the kidney.
It is also desirable to reduce tissue damage, which can be
quantified as reducing the overall tissue displacement for a
planned trajectory. While the literature for path planning in
robotic surgery is extensive, little research has been done
for PCNL path planning. PCNL differs from some of these
procedures specifically in the assumptions made during the
planning process, such as the tool being rigid throughout
the procedure, and the tool-tissue interaction mostly occurs
along the entry path [5].

This paper proposes a novel multiobjective path planner
for autonomous kidney stone access during PCNL. Multiob-
jective non-dominated sorting genetic algorithm II (NSGA-
II) is proposed to plan a B-spline curve through a set of
anchor points that represents the desired tooltip trajectory
from the entry point to the stone location. The optimization
process considers the affect of the entire tool on surrounding
tissue. Outputs of the algorithm are the optimal spline coeffi-
cients that minimize path length, tissue potential energy, and
path smoothness, and maximizes the distance to obstacles.

The paper is organized as follows. Section II provides a
brief overview of documented path planning algorithms in
robotic surgery and introduces the B-splines and NSGA-II
optimizer. The multiobjective optimization is first evaluated
through a set of simulations in Sec. III and demonstrates
the effectiveness of the path planning for a variety of goal
locations within the kidney. The simulation shows that the
planned trajectories result in minimal tissue deformation,
are relatively short and smooth, and do not collide with
the internal kidney structures, while the tool poses are
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feasible. Finally, the trajectories are put into practice through
physical experiments to demonstrate their applicability, this
is discussed further in Sec. IV. To the best of the author’s
knowledge, this is the first implementation of a multiobjec-
tive optimizer combining B-spline for robot-aided PCNL.

II. PCNL OPTIMAL PATH PLANNING

A wide variety of path planning algorithms have been
applied to path planning in robotic surgery. These algorithms
include several classical methods as well as evolutionary
approaches. Some approaches are designed for online path
planning where only the tool’s immediate surroundings and
the desired goal location are required. These include artificial
potential fields, collision cones, vector field histograms,
and dynamic windows [13], [14]. Online path planners are
computationally effective, however, they are best suited to
local path planning problems since they do not necessarily
return an optimal path, but rather a feasible path that is
primarily concerned with obstacle avoidance. Other planning
methods, such as roadmap and grid-based approaches, are
rather used to describe the environment as a whole, including
obstacles and collision-free paths, and are frequently used in
conjunction with additional search methods such as A* or
an evolutionary approach to return an ideal path [13], [14].

Evolutionary approaches to path planning are fast and
often computationally efficient. They include a wide variety
of swarm optimizers such as particle swarm optimization, ant
colony optimization, bacterial foraging, bee colony optimiza-
tion, and several lesser known swarm algorithms [13], [14].
Alternatively, genetic algorithms, fuzzy logic, and neural
networks can also be used for path planning.

Surgical path planning must take into account a variety
of objectives, thus, a multiobjective optimizer is a natural
choice for the task of planning an autonomous trajectory
for PCNL. The algorithm must consider multiple objectives
to plan an ideal path and provide not one but multiple
paths that are safe and effective in reaching the kidney
stones. A frequently used and highly effective multiobjective
algorithm, NSGA-II is well-known for its computational
efficiency and performance. For example, in [15], NSGA-II
is used to optimize the path planning task for an unspecified
autonomous robot, where the paths are represented using
splines to provide smooth trajectories.

In multiobjective optimizers, a high number of optimiza-
tion variables can increase the computational time signifi-
cantly. Therefore, to limit the dimension and the complexity
of the problem, it is preferable if only a few coordinates
are necessary to define the paths. For example, in order to
maintain a smooth trajectory, a curve can be interpolated
based on anchor points created by NSGA-II. Alternatively,
B-splines can be used to represent these curves using only a
few anchor points.

A. PCNL Trajectory B-spline Representation

B-splines are well-suited to obstacle avoidance path plan-
ning tasks as they are computationally efficient and able
to provide smooth continuous trajectories. The number of

anchors used to generate a B-spline increases the number of
curves used to generate it and can increase the complexity
of the resulting curve. B-splines are a piece-wise polynomial
function constructed from a set of basis functions given as

Ni,j(t) =

t− ti
ti+j − ti

Ni,j−1(t) +
ti+j+1 − t

ti+j+1 − ti+1
Ni+1,j−1(t)

(1)

where j = 1, 2, . . . , d, and d is the degree of the B-spline
being constructed. The degree of the spline is calculated with
d = m− n− 1 for a set of n+ 1 control points and a knot
vector t ∈ R1×m+1. When j = 0 the basis function takes
the form of

Ni,0 =

{
1 ti ≤ t ≤ ti+1

0 otherwise
(2)

where ti is the ith entry in the knot vector which must be a
non-decreasing series and each ti ∈ [0, 1]. The final curve is
then calculated as

C(t) =

n∑
i=1

PiNi,d(t), (3)

where Pi ∈ RD are the coordinates of control point i for
the dimension D, and Ni,d(t) is the corresponding basis
function.

Splines are also well-suited to be used within an optimizer,
as a relatively complex curve requires only a few control
points P to define it, thus keeping the dimensionality of the
problem low. The objective of the optimizer is therefore to
determine the coordinates of a limited number of control
points such that the path created by them optimizes for a set
of pre-defined cost functions.

B. Multiobjective control point optimizer

NSGA-II uses four objectives when planning the ideal path
for PCNL:

Path Length is to be minimized. For a 2 dimensional
scenario C(t) contains the piecewise equations x(t) and y(t)
which describe the x and y coordinates along the curve. Thus
the path length can be defined as

f1 =

∫ b

a

√
1 +

(
y′

x′

)2

dx (4)

where x′ = dx
dt , y′ = dy

dt and a ∈ RD and b ∈ RD are the
start and end points of the path respectively.

Obstacle Distance describes the distance between the
tool shaft and obstacles through the entire path trajectory.
Maximizing the distance to an obstacle is important to avoid
collisions with obstacles and keep the surgical tool as far
away as possible from sensitive tissue during the procedure.
To this end, the patient anatomy can be discretized as a
set of voxels or pixels depending on the dimension of the
problem. The center of each voxel or pixel is stored in a
matrix T ∈ RD×κ where κ is the total number of points
used to describe the obstacle space. The distance to obstacles
along the path must be maximized. First the path C(t) is
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resampled such that there is a discrete set of evenly spaced
points describing the path, this is denoted CR(j) ∈ RD×`
where ` is the total number of points used to describe the
re-sampled path. The total distance to closest obstacles along
the path can now be quantified as

f2 =
∑̀
j=1

min ||CR(j)− T ||. (5)

It may be beneficial to consider the distance of the entire tool
to its surrounding obstacles, with the tool pose known for
each point along CR(j), (5) must be calculated and summed
for the entire tool shaft. Thus (5) becomes

f2 =

L∑
z=0

∑̀
j=1

min ||CRT (j, i)− T ||, (6)

where L is the total length of the tool and CRT (j, z) is a
point at a distance z along the the tool shaft for the jth

point along the resampled path CR(j); and when z = L
CRT (j, L) = CR(j).

Path Smoothness is to be minimized to ensure that the
path is smooth and free from unnecessary jerk. The smooth-
ness of the path further ensures patient safety by minimizing
rapid changes in motion that could cause additional tissue
damage. The smoothness is quantified by

f3 =

∫ b

a

(Q(t)/dt)
2√

x′ 2 + y′ 2
dt (7)

where
Q(t) =

|x′y′′ − y′x′′|
(x′ 2 + y′ 2)3/2

; (8)

here x′′ = d2x
dt2 and y′′ = d2y

dt2 [16].
Tissue Compression Energy is a measure of how much

energy is stored in the patient tissue due to its compression
for the entire desired tool trajectory. During PCNL, it is
assumed that the tissue compression occurs along the tool’s
entry point in the kidney only. The tissue compression energy
for a single point along the trajectory is given as

U(d) =
1

2
K

∫ z2

z1

s(z)2dz, (9)

where z1 and z2 are the entry and exit depths along the tool
axis respectively and

s(d, z) =

{
(z cos θ + xt − xOP (z)) if z1 ≤ z ≤ z2

0 otherwise,
(10)

where z is the distance along the tool axis, xt is the
horizontal coordinate of the tool base (where it is attached
to the robot end-effector), θ is the angle of the tool, and
xOP (z) is an equation describing the original entry path into
the kidney, see Fig. 1(a).

The optimization variables are the coordinates for the
anchor points, these anchor points are used in addition to the
goal point and three constant points used to define a straight
entry trajectory when creating the B-spline. Moving forward,

(a) (b)

Fig. 1. Automated robotic PCNL overview, (a) shows a robot arm holding
a nephroscope and how the tool enters the kidney, (b) shows 4 predefined
constant control points and a possible B-spline created between these points
leading to the kidney stone.

the anchor points created by the optimization algorithm may
be referred to as the internal anchors. If five internal anchors
are used in a 2-dimensional scenario, there is a total of 10
optimization variables (D×number of internal anchors).

A curve is generated for each of these population members
and is then evaluated on the four cost functions described
above. The evaluation of the cost functions requires that
the tool pose is known. During autonomous PCNL kidney
access, the tool is attached to the robot arm at its end-effector
and the robot steers the tool from outside the tissue such that
the tip follows the path to the end, that is, the location of
the calculi. The inverse kinematics is presented in [10]. This
is simulated during NSGA-II in order to evaluate the cost
functions for every iteration along the discretized path.

The results of the cost functions determine the perfor-
mance of each individual and affect the chance of a pop-
ulation member being used to generate the child population
for the next iteration of the algorithm. The initial population
is randomly generated, while each subsequent iteration of
NSGA-II applies crossover and mutation schemes to the
previous population to generate a new one. NSGA-II iterates
until a stopping criterion is reached, in this case, a specified
number of iterations. Once NSGA-II reaches the desired
number of iterations, it returns the final population, the size
of the final population is the same as that of the initial
population or smaller, because the algorithm rejects solutions
from the final set if they are not considered Pareto optimal.

III. SIMULATION RESULTS

The proposed path planning method is first evaluated
through a set of simulations. The simulations are performed
for a simplified 2D version of the kidney and its anatomy,
based on the phantom kidney used for the physical exper-
iments in a later section, see Fig. 5. Additionally, three
different goal points are considered, each goal is selected
to demonstrate the algorithms ability to consider the sur-
rounding environment; to this end Goal 1 is located on the
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Constant anchor points
NSGA-II determined anchor points 2nd Degree B-spline

3rd Degree B-spline
4th Degree B-spline
5th Degree B-spline
6th Degree B-spline

Fig. 2. Example of a B-spline with a total of 9 anchor points, constant
anchor points are shown with circles, the first 3 ensure a relatively straight
entry trajectory, the last one represents the goal point. The location of the
internal anchors are determined by the NSGA-II algorithm (black dots). The
degree of splines are depicted for 2nd to 6th degree splines ranging in color
from light grey to dark grey respectively.

TABLE I
NSGA-II ALGORITHM PARAMETERS

Simulation parameters Workspace [mm]

Dimension 10 x range y range
Iterations 500
Number of Objectives 4 min -60 min 40
Population Size 60 max 60 max 80

bottom left of the simulated anatomy, Goal 2 is located on
the bottom right, and Goal 3 is located on the top left as
shown in Fig. 3.

In scenarios 1 to 3, different end goals are specified. The
only obstacles present in the kidney are considered to be the
kidney walls. Hence, the tooltip is free to move inside of
the kidney. One simulation is performed with an additional
obstacle present in the environment, this is performed with
Goal 1. These simulations are performed on an Intel i7
processor with 64 GB of RAM and GeForce RTX 2080 GPU.

During PCNL, the trajectory into the kidney is a straight
path from the incision to where it enters a calyx. To ensure
this entry trajectory remains straight and that the trajectory
within the kidney is smooth and continuous along this first
part of the trajectory, the first three control points for the
B-spline are constant and determined in advance based on
the desired entry trajectory. The final point for the uniform
B-spline, or the goal point for the path, is also maintained as
a constant for all of the B-splines. The NSGA-II algorithm
controls the coordinates for five points between the three
points defining a straight entry path and the final goal point
see Fig. 2. For the 2D scenario described above, there will
be a total of 10 variables that NSGA-II controls.

The simulation parameters are found in Table I; note that
the population and number of iterations are kept relatively
small compared to other optimization scenarios to reduce the
computation time of the algorithm.

The results from the NSGA-II optimization for each
simulation scenario can be seen in Fig. 3. In subfigure (a)
is an example of a random initial population. Subfigures (b)
to (d) show the final Pareto optimal solutions for each goal
point. As it can be seen, the Pareto optimal solutions are all
smooth curves that are relatively short and do not collide

80

60

40

20

0

-60 -40 -20 0 20 40 60

(a) Initial NSGA-II population

80

60

40

20

0

-60 -40 -20 0 20 40 60

(b) Results for goal 1
80

60

40

20

0

-60 -40 -20 0 20 40 60

(c) Results for goal 2

80

60

40

20

0

-60 -40 -20 0 20 40 60

(d) Results for goal 3

80

60

40

-60 -40 -20 0 20 40 60
(e) Results for goal 1 with an obstacle present.

Fig. 3. The results from NSGA-II path planning, (a) shows an example of a
randomly initialized population, (b)–(d) are the Pareto optimal solution sets
returned for scenarios 1 through 3, (e) shows the Pareto optimal solutions
for scenario 4 i.e. when an obstacle is present in the environment.

with any obstacles. Subfigure (e) shows the Pareto optimal
solution for scenario 4, i.e., goal 1 when an obstacle is
present, demonstrating the algorithm’s ability to create paths
that still navigate around more complex surroundings with
smooth trajectories.

From the Pareto optimal solution set, one member must be
chosen to execute the task. This is a benefit of using a multi-
objective optimizer that returns multiple solutions as it keeps
a human in the loop of the planning procedure. Since all of
the cost function values have been optimized to some degree,
the generated solutions all represent acceptable trajectories.
From these solutions, the operator can discard paths that are
closer to obstacles than others, apply a maximum acceptable
threshold to tissue compression, etc.

The cost function values are normalized relative to their
respective minimums and maximums to compare them more
easily. Furthermore, three out of the four cost functions must
be minimized. For consistency, obstacle distance is inverted
after normalization, thus in table II, lower values of obstacle
distance are more desirable.

Selecting the optimal path from the Pareto front is then
achieved in two steps. First, a subset of the final Pareto
optimal solutions is selected. This is shown in Table II for
scenario 3. The subset is selected by applying an upper
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TABLE II
SUBSET OF THE NORMALIZED COST FUNCTION VALUES FOR SCENARIO 3

Member Path Tissue Path Obstacle
length energy smoothness distance

4 0.2488 0.1471 3.130×10−10 0.4201
7 0.6501 0.0394 9.563×10−9 0.0441
8 0.3784 0.3950 1.987×10−12 0.5035
9 0.5804 0.2587 4.951×10−12 0.3939

11 0.1045 0.3088 1 0.3995
15 0.4690 0.2867 1.458×10−11 0.1650
22 0.7817 0.4025 0 0.2561
30 1 0 5.681×10−12 0
32 0.8116 0.3601 1.299×10−11 0.0004
46 0.6750 0.4377 1.464×10−13 0.6152

threshold of 0.65 and 0.72 to the normalized tissue energy
and obstacle distance cost functions, respectively. Following
this, the cost function values for each member are compared
and members whose cost function values are too similar to
a previous member are discarded. Cost function similarity
is determined by the root-mean-squared of the difference
between two members’ fitness values.

In the second step, a single solution is then selected
from the subset by inspecting each individual solution path
visually, and by analyzing their cost function values. Since
all paths tend to be relatively short, the other three cost
functions may be given more weight during the decision.
Obstacle distance is given priority.

The selected result for scenario 3 has been highlighted
in light grey in Table II (member 32). This path is being
selected since it has the second-lowest obstacle distance
and shows good results in the other cost function values.
Although member 32’s highest value is the length of this
path, this value is not the longest path generated across all
Pareto solutions. This indicates a good trade-off between cost
functions.

The resultant tool poses required to follow each of the
optimal tooltip paths from each scenario are presented in
Fig. 4. The tool poses determine the tissue compression
during the NSGA-II, they are also used to perform the
physical experiments described in the next section. From the
simulation results, both the tooltip and the tool shaft do not
intersect with the simulated obstacles. It is also worth noting
that even though the tool shaft is not constrained to the entry
point in the tissue, the optimal path keeps the tool shaft close
to its entry point to avoid tissue damage.

IV. EXPERIMENTAL EVALUATION

The path planning algorithm is also validated through
physical trials. The paths selected during simulations are
executed using a 6-DOF robotic arm (Meca 500, Mecademic,
Montréal, Canada) in a kidney phantom. The tool used in the
physical experiments is a 218.7 mm long square brass rod
with a width of 3.2 mm. An electromagnetic tool tracking
system (Aurora, Northern Digital, Waterloo, Canada) records
the tool’s tip during the trials, see Fig. 5. The robot arm steers
the tool base such that its tip follows the desired path. The
robot’s inverse kinematic is presented in detail in [10].

-100 50 0 50 100

0

50

100

150

200

250

300

(a) Scenario 1 tool poses
-100 50 0 50 100

0

50

100

150

200

250

300

(b) Scenario 2 tool poses

-100 50 0 50 100

0

50

100

150

200

250

300

(c) Scenario 3 tool poses
-100 50 0 50 100

0

50

100

150

200

250

300

(d) Scenario 4 tool poses

Fig. 4. The results of the path planning algorithm, an ideal path is
selected for each scenario and plotted in (a)–(d) above along with the tool
poses generated during the path planning process in order to reduce tissue
compression. The tool poses are shown in blue at their starts and become
green as they approach the goal point.

Each of the selected paths from the previous section is
executed on this experimental setup to ensure that the paths
are feasible. Each path is run three times. The recorded
tooltip trajectory for each run is shown along with the
reference trajectory in Fig. 6. While the obstacle is shown in
the figure, note that it is not present in the phantom kidney
and is only considered during the planning of scenario 4.

All paths follow their reference trajectories, entering the
kidney on a straight line, thanks to the first 3 anchor points,
and then following a curved line around the obstacle towards
the goal. Both the tooltip and the tool shaft successfully avoid
the obstacle and the kidney walls and the tooltip reaches the
desired goal. Lateral tool motion is also minimized by the
algorithm to limit tissue compression. The increased tracking
error as the tool approaches the goal is the outcome of the
assumption that the tool is perfectly rigid, which is not the
case for the brass tool used in the experiments. Additionally,
some error may be caused by electromagnetic interference
in the tracking process.
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Fig. 5. Experimental setup used to conduct the experiments on a phantom
kidney model. An brass rod is used as the nephroscope. The 6-degree-of-
freedom robot steers the tool base such that the tooltip follows the predefined
trajectory. The tooltip location is recorded by the electromagnetic tracking
system.

80

60

40

-40 -20 0 20

Scenario 1
Scenario 2
Scenario 3
Scenario 4

Reference Trajectories

Fig. 6. Each of the selected paths are plotted along with the tooltip tracking
results from the physical experimental trials. Scenario 4 (the dark blue path)
is the only trajectory that needs to maneuver around the obstacle.

V. CONCLUSION

Autonomous kidney access is an important component
of both semi and fully autonomous versions of PCNL. To
this end, this paper proposes a path planning framework
for PCNL using B-spline representation with the multiob-
jective optimizer NSGA-II. The resulting trajectories meet
several requirements: being short and smooth while avoiding
obstacles and high tissue compression. The path planning
algorithm is validated on four scenarios, demonstrating its
ability to plan an appropriate trajectory given different cir-
cumstances. A single trajectory is selected from the Pareto
optimal solution set that is returned by the algorithm, this
selection process keeps a human in the loop of planning
the procedure to further ensure patient safety. Each of the
selected trajectories is evaluated with three physical trials,
where a robot arm controls the tool and advances it along
the planned path towards the goal. The physical trials demon-
strate the ability of the system to avoid obstacles while

minimizing tissue damage at the entry point.
Future work will explore incorporating a tool bending

model and a finite element model of the kidney tissue to
better represent the coupled tool/tissue interaction. Further-
more, active feedback control using ultrasound images as
position feedback will be investigated to enable real-time
path planning for increased accuracy.
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