MECE 2430U
Dynamics

Lecture 17
Relative Motion Analysis: Acceleration
Outline of Lecture 17

By the end of this lecture you should be able to

• Resolve the acceleration of a point into translation and rotation
• Determine acceleration of a point using a relative acceleration analysis
Applications

A collaborative robot is intended to physically interact with humans in a shared workspace.

To ensure safely, the acceleration of the arm must be limited. How can it be calculated?
Applications

An inverted pendulum has its center of mass above its pivot point. It is unstable and without additional help will fall over.

How can we calculate the acceleration of the pendulum?
Instantaneous centre of zero velocity

There always exists a point in the plane of motion of body where the velocity is zero.

\[v_G = v_A + \omega \times r_{G/A} \]

\[= 0 + (-\omega)k \times (rj) = r\omega \hat{j} \]

→ A is called the centre of zero velocity, or IC

→ IC may not lie on the body
Instantaneous centre of zero velocity

Case 1: The velocity of a point A and the angular velocity ω are known:

$\vec{v}_A = \vec{v}_{IC} + \omega \times \vec{r}_{A/IC}$

$\Rightarrow IC$ lies along a line perpendicular to \vec{v}_A.

$r_{A/IC} = \frac{\vec{v}_A}{\omega}$

\Rightarrow Note that the body rotates CW.
Instantaneous centre of zero velocity

Case 2: The line of action of two non-parallel velocities are known:

\[\mathbf{r}_{A/IC} = \frac{\mathbf{v}_A}{\omega}, \quad \mathbf{r}_{B/IC} = \frac{\mathbf{v}_B}{\omega} \]

→ IC lies along a the intersection of the lines perpendicular to \mathbf{v}_A and \mathbf{v}_B.
Instantaneous centre of zero velocity

Case 3: The line of action and **magnitude** of two parallel velocities are known:

\mathbf{v}_A $\mathbf{r}_{A/IC}$ \mathbf{v}_B $\mathbf{r}_{B/IC}$

$\mathbf{r}_{A/IC} = \frac{\mathbf{v}_A}{\omega}, \quad \mathbf{r}_{B/IC} = \frac{\mathbf{v}_B}{\omega}$

$\rightarrow IC$ lies along the intersection of the lines perpendicular to \mathbf{v}_A and \mathbf{v}_B.
Experiment
Exercise 1

Locate the instantaneous centre of zero velocity of link AB
Relative motion analysis - acceleration

The equation relating the velocity of two points is

\[
\frac{d\mathbf{r}_B}{dt} = \frac{d\mathbf{r}_A}{dt} + \frac{d\mathbf{r}_{B/A}}{dt}
\]

\[\mathbf{v}_B = \mathbf{v}_A + \mathbf{v}_{B/A}\]

For the acceleration, we have

\[
\frac{d\mathbf{v}_B}{dt} = \frac{d\mathbf{v}_A}{dt} + \frac{d\mathbf{v}_{B/A}}{dt}
\]

\[\mathbf{a}_B = \mathbf{a}_A + \mathbf{a}_{B/A}\]

\[
\frac{d\mathbf{v}_A}{dt} = \mathbf{a}_A: \text{ Absolute acceleration of } A
\]

\[
\frac{d\mathbf{v}_B}{dt} = \mathbf{a}_B: \text{ Absolute acceleration of } B
\]

\[
\frac{d\mathbf{v}_B}{dt} = \mathbf{a}_B: \text{ Acceleration of } B \text{ with respect to } A
\]
Relative motion analysis - acceleration

In terms of tangential and normal components:

\[
a_B = a_A + a_{B/A}
\]

\[
= a_A + (a_{B/A})_t + (a_{B/A})_n
\]

Recall that \(a_t = \alpha \times r \) and \(a_n = -\omega^2 r \)
Relative motion analysis - acceleration

\[a_B = a_A + \alpha \times r_{B/A} - \omega^2 r_{B/A} \]

- \(a_B \): acceleration of point \(B \)
- \(a_A \): acceleration of point \(A \)
- \(\alpha \): angular acceleration of the body
- \(\omega \): angular velocity of the body
- \(r_{B/A} \): position vector from \(A \) to \(B \)

\(\alpha \) is a vector.
\(\omega \) is a scalar.

Due to rotation

Due to translation
Pin connections

Pin-connected points experience the same acceleration as they travel along the same path.

The acceleration of C is directed vertically. Why?
Exercise 2

At a given instant the bottom A of the ladder has an acceleration $a_A = 4 \text{ m/s}^2$ and velocity $v_A = 6 \text{ m/s}$ both acting to the left. Determine the acceleration of the top of the ladder and the ladder’s angular acceleration at this same instant.

Procedure:

→ Find CI and determine ω

→ Apply the relative acceleration equation to find a_B and α
Exercise 2 - continued

Angular velocity

\[\omega_A = \omega \times \frac{r_{AIC}}{r_{IC}} \]

\[b = g \omega \]

\[\omega = 0.75 \text{ rad/s} \]
Exercise 2 - continued

Angular acceleration

\[\vec{a}_B = \vec{a}_A + \vec{\alpha} \times \vec{r}_{B/A} - \omega^2 \vec{r}_{B/A} \]

\[\vec{r}_{B/A} = 16(\cos 30^\circ \hat{i} + \sin 30^\circ \hat{j}) \text{ m} \]

\[\vec{a}_B = -4 \hat{i} + (2 \omega^2) \times (16 \cos 30^\circ \hat{i} + 16 \sin 30^\circ \hat{j}) - 0.75 \text{ rad/s}^2 \left(16 \cos 30^\circ \hat{i} + 16 \sin 30^\circ \hat{j}\right) \]

\[\vec{a}_B = -4 \hat{i} + 13.856 \omega^2 \hat{j} - 8 \omega^2 \hat{i} - 7.79 \omega^2 \hat{j} - 4.5 \hat{j} \]

\[\omega \text{ is a scalar.} \]

\[\omega = 0.75 \text{ rad/s} \]

\[\alpha = 1.47 \text{ rad/s}^2 \]

\[\theta = -4 - 8 \alpha - 7.79 \]

\[-\alpha_B = 13.856 \alpha - 4.5 \]

\[a_B = 24.9 \text{ m/s}^2 \]

\[\alpha > 0 \rightarrow \text{what does it mean?} \]
Exercise 3

Bar AB has the angular velocity and acceleration shown. Determine the velocity and acceleration of the slider block C at this instant.

Procedure:

→ Calculate v_B and a_B considering rotation about A

→ Find IC and determine v_B and v_C

→ Find $a_C = a_B + \alpha_{BC} \times r_{C/B} - \omega_{BC}^2 r_{C/B}$
Exercise 3 - continued

1 → Rotation about A
\[\overrightarrow{\omega_B} = \omega_{AB} \times \overrightarrow{r_{BA}} \]
\[\overrightarrow{\omega_B} = 4 \text{ rad/s} \times (0.5 \cos(45^\circ) \hat{x} + 0.5 \sin(45^\circ) \hat{y}) \]
\[\overrightarrow{\omega_B} = -\sqrt{2} \hat{x} + \sqrt{2} \hat{y} \text{, } \overrightarrow{\omega_B} = 2 \text{ m/s} \]

Acceleration \(\mathbf{a}_B \)
\[\mathbf{a}_B = \alpha_{AB} \times \overrightarrow{r_{AB}} - \omega_{AB}^2 \overrightarrow{r_{AB}} \]
\[\mathbf{a}_B = 6 \text{ rad/s}^2 \times (0.5 \cos(45^\circ) \hat{x} + 0.5 \sin(45^\circ) \hat{y}) - 4^2 (0.5 \cos(45^\circ) \hat{x} + 0.5 \sin(45^\circ) \hat{y}) \]
\[\mathbf{a}_B = -5.5 \sqrt{2} \hat{x} - 2.5 \sqrt{2} \hat{y} \text{ m/s}^2 \]
Exercise 3 - continued

2. Calculate v_B and v_C

\[
\frac{r_{B/IC}}{\sin(30^\circ)} = \frac{1}{\sin(45^\circ)} \quad \Rightarrow \quad r_{B/IC} = \frac{\sqrt{2}}{2} \text{ m}
\]

\[
\frac{r_{C/IC}}{\sin(45+60)} = \frac{1}{\sin(45)} \quad \Rightarrow \quad r_{C/IC} = 1.366 \text{ m}
\]

\[
v_B = \omega_{BC} r_{B/IC}
\]

\[
v_C = \omega_{BC} r_{C/IC}
\]

\[
w_{BC} = 2\sqrt{2} \text{ rad/s}
\]

\[
v_C = 3.86 \text{ m/s}
\]
Exercise 3 - continued

3 → Relative acceleration equation

\[\mathbf{a}_B = -5.5\sqrt{2}\mathbf{i} - 2.5\sqrt{2}\mathbf{j} \text{ m/s}^2 \]

\[\mathbf{r}_{C/B} = 1 \cos 60^\circ \mathbf{i} - 1 \sin 60^\circ \mathbf{j} \text{ m} \]

\[\mathbf{a}_C = \mathbf{a}_B + \alpha_{BC} \times \mathbf{r}_{C/B} - \omega^2_{BC} \mathbf{r}_{C/B} \]

\[\mathbf{a}_C = -5.5\sqrt{2}\mathbf{i} - 2.5\sqrt{2}\mathbf{j} \]

\[-2 \omega \times (\cos 60^\circ \mathbf{i} - \sin 60^\circ \mathbf{j}) \]

\[-(2\sqrt{2})(\cos 60^\circ \mathbf{i} - \sin 60^\circ \mathbf{j}) \]

\[-a_C = \left(\frac{-\sqrt{3}}{2} \alpha_{BC} - 11.77 \right) \mathbf{i} + (3.392 - 0.5\omega \omega_{BC}) \mathbf{j} \]

\[\alpha_{BC} = 6.785 \text{ rad/s}^2 \]

\[\theta = 3.392 - 0.5\omega \omega_{BC} \]

\[-a_C = \frac{-\sqrt{3}}{2} (6.785) - 11.77 \]

\[\alpha_C = 17.7 \text{ m/s}^2 \]
Exercise 4

At a given instant the roller A on the bar has the velocity and acceleration shown. Determine the velocity and acceleration of the roller B, and the bar’s angular velocity and angular acceleration at this instant.

Procedure:

\rightarrow Find IC and determine ω and ν_B

\rightarrow Apply the relative acceleration equation
Exercise 4 - continued

1 → Locate IC and find ω and v_B

From the geometry \(r_{A/IC} = r_{B/IC} = 0.6 \text{ m} \)

\(\omega_A = \omega r_{A/IC} = \omega r_{B/IC} = 0.6 \times 6.7 \text{ rad/s} \)

\(v_B = \omega r_{B/IC} = 0.6 \times 6.7 \times 0.6 = 4 \text{ m/s} \)
Exercise 4 - continued

2 \rightarrow \text{Relative acceleration equation}

\[a_B = a_B (\cos 30^\circ \hat{i} - \sin 30^\circ \hat{j}) \]

\[r_{B/A} = 0.6 (\sin 60^\circ \hat{i} - \cos 30^\circ \hat{j}) \]

\[a_B = a_A + \vec{\alpha} \times r_{B/A} - \omega^2 r_{B/A} \]

\[a_B (\cos 30^\circ \hat{i} - \sin 30^\circ \hat{j}) = -6 \hat{j} + \vec{\alpha} \times 0.6 (\sin 30^\circ \hat{i} + \cos 30^\circ \hat{j}) \]

\[-0.667^2 \cdot 0.6 (\sin 30^\circ \hat{i} + \cos 30^\circ \hat{j}) \]

\[\frac{\sqrt{3}}{2} a_B \hat{i} - \frac{1}{2} a_B \hat{j} = (0.3 \sqrt{3} \alpha - 1.33) \hat{i} + (0.3 \alpha + 17.09) \hat{j} \]

\[\alpha = -15.66 \text{ rad/s}^2 \]

\[a_B = 24.8 \text{ m/s}^2 \]
Exercise 5

The disk has an angular acceleration \(\alpha = 8 \text{ rad/s}^2 \) and angular velocity \(\nu = 3 \text{ rad/s} \) at the instant shown. If it does not slip at \(A \), determine the acceleration of point \(B \).

Procedure:

1. Apply the relative acceleration equation
2. Calculate the magnitude and direction of \(\mathbf{a} \)
Exercise 5 - continued

Hint: Since the disk rolls without slipping \(a_O = \alpha r \)

Relative acceleration equation

\[
\vec{a}_B = \vec{a}_O + \vec{\alpha} \times \vec{r}_{B/O} - \omega^2 \vec{r}_{B/O}
\]

\[
\vec{a}_B = -4.35 \hat{\theta} + 6.01 \hat{\theta} \text{ m/s}^2
\]
Quiz

Q1 → Consider the following statements:

Statement 1: IC has always zero acceleration.

Statement 2: The location of IC does not change over time.

Statements 1 and 2 are, respectively:

(a) True and true

(b) False and true

(c) True and false

(d) False and false

(e) None of the above
Quiz

Q2 → Select the correct location of IC for the body shown

Why not (a)?
Quiz

Q3 → If points P and P' are in contact with one another without slipping, at the instant shown they have:

(a) The same position
(b) The same velocity
(c) The same speed
(d) The same acceleration
(e) All of the above
Quiz

Q4 → If points A and A' are pin-connected, at the instant shown they have:

(a) The same position
(b) The same velocity
(c) The same speed
(d) The same acceleration
(e) All of the above
Next class...

- Mass moment of inertia